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Introduction

Go is a board game with simple rules, yet very complex gameplay and strate-
gies. It has a strong support in many countries, with millions of players world-
wide.1 As many of these (mainly amateur) players play online2 and the top
professional matches are usually recorded and published in magazines or on-
line (Yevstygnyeyev, 2013; van der Steen, 2013), there exists a large number of
game records for players of different skill. Moreover, since the game held a strong
social status in the past, there are lots of historical records as well, though mainly
from Japan of 17th century and later (Hall – Fairbairn, winter 2011a). Usually,
the records of the master-level players are studied manually to grasp a deeper
understanding of the game and to improve one’s intuition.

So far, not much has been done in analysing these records using computers.
There are programs that serve as tools to study the opening phase of the game
by giving simple statistics of next move from professional games (Görtz, 2012;
de Groot, 2005). The professional games have also been used in computer Go;
patterns from the professional games are used as a heuristic to improve the tree
searching, e.g. (Coulom, 2007). Apart from these, we are not aware of any other
uses.

In (Baudǐs – Moudř́ık, 2012), we have devised a general methodology for eval-
uating a player based on a sample of games he played. By comparing the eval-
uations of different players we were able to distinguish between players of e.g.
different strengths, under the assumption that players who have similar strength
should have similar evaluations.

This work presents the methodology, extended in several ways:

1. We introduce new features into the evaluation and compare their contribu-
tions.

2. We refine the machine learning methods used to analyze these evaluations.

3. We test the methodology on larger samples of games, and improve the
dataset sampling to be more accurate.

4. We demonstrate the concept by a web application, which also serves as
a simple teaching aid to Go players, while gathering more data.

Outline

This thesis is organized as follows. Firstly, we present the game of Go (Chap-
ter 1). Secondly, we discuss the problem at hand and sketch our approach to it
(Chapter 2). Next two chapters present the features used to extract information
from the games (Chapter 3) and the machine learning methods used to learn
the dependencies (Chapter 4). The actual experimental results are detailed in
Chapter 5. Finally, we discuss the results and future directions (Chapter 6).

1A Japanese 2002 estimate of Go Census (2002) gave an estimate of 24 millions of Go
players worldwide.

2E.g. on the Kiseido Go Server (Shubert, 2013a).
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1. Game of Go

The game of Go is one of the oldest board games known to humankind, the
earliest records spanning back to 500 B.C. (Fairbairn, 1995). As time passed by,
Go became an important part of East Asian culture. Especially in Japan, Go has
had a very important social status. Despite this popularity, the game was largely
unknown in the West until the beginning of the 20th century (van Ees, 2005).
Today, Go’s popularity is spread almost all over the globe, though the strongest
players still reside in Korea, China and Japan.

Go is a two-player game with perfect information. The two players take turns
in placing stones on free intersections on a playing board (goban). The first player
has black stones, the second one has white stones. The most widely used board
size is 19× 19 intersections, the 13× 13 or 9× 9 boards are also quite usual.

The simplicity of rules implies that a player can play on almost all of the
empty intersections. In no way does this mean that every valid move is a good
move as well. Quite the opposite is true — the majority of valid moves are
terrible. This means that Go has a very large branching factor, which makes it
a hard problem for computers. The computer Go is currently a very popular field
of study, because it eludes the traditional AI techniques. For instance, brute-
force searching is not applicable in Go, because the search space explodes long
before any nearly good solution is found. In the last decade, a big progress has
been made with Monte-Carlo tree search methods (MCTS for short). The main
idea is that the probability of a player winning given he plays a particular move
can be approximated using random simulations. It is surprising how well this
technique performs. Recently (in march 2012), a computer program Zen beat
a former top Japanese professional Takemiya Masaki at a 4-stone handicap game
(the computer being the weaker player) (Wedd, 2013).1 A good survey on the
MCTS is given by Browne et al. (2012).

1.1 Basic Rules

This section presents a minimal working overview of the game rules and it might
be skipped if you are familiar with the game. However, it is not meant as a tutorial
to the game, for there is an abundant supply of study material online. For
example, see Sensei’s Library (2013k) for a nice introduction.

Go is a game which has very simple rules. Players2 take turns in placing black
and white stones at the free intersections on the board. Players may choose to
give up on the right to play, this is called a pass. When both players pass, the
game is finished. Next, we shall clarify what comprises the moves.

Definition. A liberty of a stone (or a group of stones) is an open intersection

1The top programs combine many techniques in line with MCTS, usually by skewing the
distributions obtained by random simulations in direction given by some prior knowledge. This
might include knowledge from pattern matching (good shapes have bonus) dictionaries of open-
ings (good openings have bonus), local searches and other heuristics. See (Wikipedia, 2013) for
a good overview.

2In Go, the black player Black is referred to as she, while the white player White is referred
to as he.
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Figure 1.1: Basic situations.

directly next to the stone (or in the direct neighbourhood of the group of stones).

For example, the stone in Figure 1.1 has 3 liberties (intersections at the

top, left and bottom of the stone, labelled 1, 2, 3 in the figure), the group of

3 stones has 6 liberties in total. We say that a stone (or a group of them) is in
atari if it has only one liberty.

Essentially, there are only two main rules in Go:

Definition. Rule of liberties. Every stone (or group of stones) on the board
must have at least one liberty. Stones that have just lost their last liberty are
removed from the board, we say they were captured by the player who removed
the last liberty.

Definition. Rule of ko. The stones on the board must not repeat any previous
position of stones. Such moves are forbidden.3

Example situations: (see Figure 1.1)

• The first rule defines basic mechanics of the game. For example, because
the 3 white stones in upper right corner of Figure 1.1 are in atari, Black
can capture them by playing at a to take the last liberty away. Once he
places his stone at a, he removes the 3 white stones from the board.

• Because it has only one remaining liberty (at b), the black group of stones
in the lower right corner can be captured if White plays at b. Effectively,
at the time when White puts down his stone at b, this stone also has no
liberty. This “suicide” is only allowed if the move itself removes the last
liberty of some other stones. These stones are removed from the game by

3This rule effectively denies infinite loops.
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the first rule and the capturing stone regains liberties. By the end of the
move, once White removes the black stones, the white stone at b has 2
liberties — at H1 and J2.

• The white group in the upper left corner has two liberties (coordinates A7
A9). To capture the group, Black would need to take both of these liberties
away with a single move, but this cannot be done. Therefore, the white
group in the upper left corner is unconditionally alive.

• To illustrate the ko-rule, lets have a look at the lower left of the figure.
Suppose it is Black’s turn and she captures the stone by playing at c.

Next, it is White’s turn, but because of the ko-rule, he cannot recapture the
black C2 stone by playing at D2 and so he has to play elsewhere. Because
this other play changes the position of stones on the board, he can capture
the black stone the next time he plays.

Definition. An eye of a group of stones is a liberty that is enclosed by stones of
one colour.

The group in the lower right corner of Figure 1.1 has one eye, the group in
the upper left corner has two eyes.

Definition. A group of stones that has at least two eyes is called alive — it
cannot be killed. There is no way for the opponent to capture the stones. On the
other hand, a group that can neither make two eyes, nor be rescued4 is dead.

The black group in the lower right of Figure 1.1 is dead, whereas the white
group in the upper left is alive.

Scoring and rulesets

The main objective players are trying to accomplish is to have more points than
the opponent and thus win the game. So far, we have only presented rules that
define where the stones can be put. The scoring proceeds as follows:

Definition. Territory scoring (Japanese scoring) — during the course of the
game, each player keeps the stones he has captured (these are called prisoners).
At the end of the game, dead stones are removed from the board. The dead black
stones are added to White’s prisoners and vice versa.

The total number of points each player has equals the number of free intersec-
tions enclosed by his stones plus the number of his prisoners. Usually, White also
receives a compensation (usually 6.5 points) for Black playing first, this compen-
sation is called komi.5

The player with more points wins the game.

Example of a finished game: (see Figure 1.2)

• Because the area marked with a is enclosed by black stones, it is Black’s
territory. There are 18 open intersections, so Black has 18 territory points
here.

4E.g. by connecting with a group which is alive or by capturing the enclosing enemy stones.
5By playing first, Black has the initiative in the beginning.
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• The area labelled with b is not completely enclosed by white stones, because
there is the black group of 5 stones marked with d. But since this group
does not have two eyes and there is no way for Black to make them, it
is regarded as dead. (For example, by playing at A8, White can always
capture the two Black stones at A7 and B7. If Black plays A8 in order to
prevent this, White captures the 4 stones by playing B9.) Notice, that if
there was a black stone at c, the group would be alive. When White played
c he therefore killed the group. In this situation (the first one to take the
point has the profit) we say that the c point is a vital point (of the black
group in the upper left corner). Usually, it is a good idea to play such points
before the enemy does.

So, White has 22 points of territory here (including the intersections under
the 5 dead black stones) plus 5 points for the black prisoners.

• Next, there are 2 intersections at e. Because they are not solely enclosed
by any of the players, these intersections are not counted as territory. We
call such intersections neutral points.

• Finally, there is the white group labelled with f in the bottom-right corner.
This group has two eyes (H2, J1) and is thus alive. White has another 2
points of territory here.

• To sum up, Black has 18 territory points in the bottom-left corner. Because
he killed the Black’s group in the upper left corner, White has 5 prisoners
plus 22 territory points for the upper part. White also has 2 points in
the lower-right corner. Finally, because Black was the first to play, White
receives a compensation of 6.5 points.

Together, Black has 18 points, while White has 22 + 5 + 2 + 6.5 = 35.5
points. White wins with a clear lead.

In the prior example, determining the status (whether it is alive or dead)
of the black group in the upper left corner was quite easy. It is not necessarily
always so. The disputes over statuses of groups are usually settled by resuming
the game and playing the situation out.

There are also certain situations involving groups of both players which are
neither alive nor dead. This situation is called seki (dual life). The situation
occurs when groups of different colors share some liberties and the first player to
fill one of the shared liberties gets captured. Therefore, neither player will play
there and neither group of stones will be captured. See Sensei’s Library (2013i)
for a complex discussion of the topic.

It should be noted that there are other variations of the scoring and rules. For
example, under Chinese scoring, players get points for area under stones instead of
the territory enclosed by the stones as we saw here. Both scoring methods do not
differ vastly, usually, the difference is at most 1 point. Refer to Sensei’s Library
(2013h) for details.

Apart from the scoring method used, the rulesets may differ in their approach
to the ko situations and other minor settings. However, the gameplay and strat-
egy remains almost the same. See Sensei’s Library (2013g) for detailed overview
of different rulesets.

7



A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

a

d

bc

e

f

Figure 1.2: A finished game.

1.2 Rating and Handicap Games

Even though the basic rules of the game are quite easy and even very small
children are able to absorb them, mastering the art of Go takes many years of
study. To compare strengths of different players, a ranking system has been
devised. Traditionally, the ranks are divided into dan and kyu classes. The
dan classes are regarded as master ranks, kyu ranked players are regarded as
students.6 (Wikipedia, 2012)

The kyu scale spans from absolute beginners (20-kyu), to moderately skilled
players (1-kyu), the dan scale spans from 1-dan (directly above the 1-kyu) to
9-dan.7,8

In comparison with other games, most notably Chess, Go is unique in a sense
that even players with different skills can set up an even game. This is done
using so-called handicap stones. The weaker player can place down a certain
amount of stones before the game starts9 — so that he has an advantage to begin
with. This advantage balances the difference in strengths. The ranks are cleverly
scaled; the difference in rank is equivalent to number of handicap stones needed.

6Intriguingly, this ranking system originally devised for Go during the Edo period in
Japan (Hall – Fairbairn, winter 2011b) has also been adopted in some martial and fine arts
of eastern origin.

7Professional players also use the dan ranks, but the scaling is a bit different. Approximately,
the first professional dan (1-pro) is equivalent to amateur 7-dan. Historically the difference of
1 rank between two professional players was about 1/3 of a handicap stone. Nowadays however,
the pro-dan scale serves as an indication of achievements, rather than an exact comparison of
players’ strengths. (Sensei’s Library, 2013c)

8There exists a number of different ratings, that are often not directly comparable to each
other. For example, the KGS (one of the popular online Go servers) 3-kyu could play evenly
against European 7-kyu (the official European rank, given by the European Go Federation).
Refer to (Sensei’s Library, 2013f) for a deeper comparison and discussion.

9The positions of these stones are defined depending on their amount.
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For example, 10-kyu player should place five handicap stones against a 5-kyu
player for the chances of winning to be roughly similar. Also, when the handicap
stones are in use, the komi compensation is usually changed to 0.5 (to avoid a tie).

1.3 Important Concepts

The following lines present some important concepts of Go in a strongly simplified
manner.

1.3.1 Gameplay

The way humans play Go has some characteristics. The usual game can be rough-
ly divided into three stages, opening (fuseki), middle game and endgame (yose).
This distinction is very rough and there are no precise boundaries. Sometimes,
the middle game fighting occurs almost immediately after the start, sometimes,
the middle game is “skipped” altogether.

The opening sketches the main territories and war zones, optimally in line
with some high level strategy. The stones do not usually come in direct aggressive
contact with each other during the opening. Usually, the corners are occupied
first, because it is easiest to get territory here (the corner territory needs to be
enclosed only from two sides). After the corners, extending to the sides and then
into the center are next big moves.

The middle game is dominated by attack and defence. Players struggle to
reduce enemy territory, increase their own territory or otherwise gain an advan-
tage. Sometimes, a running fight occurs — a group which is not locally alive runs
away towards friendly forces in order to connect with them and assure life.

The endgame phase begins once statuses of all groups have been more or less
determined. In the endgame, players seek to gain local advantage. In the first two
stages, it is usually critical to view the board globally (as groups influence each
other), while the endgame may usually be broken down to individual independent
plays (how to combine them and how to choose the proper play is however a thing
that must also be regarded globally).

1.3.2 Effectiveness

In Go, the goal is to have more points than opponent. The player who safely
encloses more territory with fewer moves than the opponent wins. Therefore,
the effectiveness of one’s moves is of utmost importance. This does not limit us
to enclosing territory directly. The player who needs less moves to stabilize his
group (make sure it is alive) can “spend” the remaining moves e.g. to attack
enemy groups, increase his own territory and so forth.

Shape

For example, the concept of shape is an incarnation of this principle. Good
shape refers to a formation of stones that has good tactical possibilities: space
for eyes, high number of liberties, possibilities of escaping, and so on. On the other
hand, bad shape may easily be attacked, does not defend one’s other weaknesses,

9



Figure 1.3: Shapes. White has a good shape, while black stones form the terrible
empty triangle.

etc. Figure 1.3 shows such shapes. The white stones show a typical good shape
(called the table shape). The white stones are connected, have a lot of liberties
and have a chance of forming an eye in the middle. The black stones do, however,
form a bad shape (the notoriously known empty triangle). This is a formation
of 3 stones that has the fewest liberties, not much eye-space and can usually be
attacked profitably. Black will need to invest further stones to make these stones
useful.

Sente/Gote

Another really important concept is the notion of sente and gote. We say that
a move (or a series of moves) is sente if the opponent has to respond to it or
something bad happens to him (the burden of not responding is not worth the
initiative taken by not responding). On the other hand, when a player plays a gote
move, the opponent does not have to respond (the burden of not responding is
relatively small), or the player who started has to respond to the opponent’s
response. Of course, the sequence might take more moves. The important thing
is that with sente play, the player retains the initiative after the sequence ends.
With gote play, he does not.

For example, Figure 1.4 shows an example endgame situation. Black descend
to edge at a is a sente move, for if White does not protect at b, Black b kills the
white corner group by destroying its eye. Later, Black can utilize the stone at
a to reduce white territory by playing c, possibly again in sente. On the other
hand, if White decides to protect by playing at a before Black does so, he loses
the initiative, because Black is not forced to reply. White a is thus a gote move.

The sente play keeps the initiative, the gote play gives it to the opponent.
This does not mean that gote is necessarily a bad move. It may be the case that
the player has no sente play anymore, or that by playing the gote move a player
neutralizes a big sente move of the opponent. Keeping an eye on what moves are
sente or gote is one of the most important things a player needs to learn in order
to improve. Keeping the initiative, making profits in sente, preparing own sente
plays while neutralizing opponent’s is crucial in Go.

1.3.3 Balance of Power

Beyond the relatively simple local goals (such as keeping one’s stones in a good
shape), players usually follow some deeper strategy. For example, someone who
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a bc

Figure 1.4: Sente and Gote. Black descend at a is sente, Black b would kill the
white corner group. Later, Black can play c.

likes to have secure territory will probably keep his stones near the sides and his
corners. Usually, moves played on third line (from the edge) are hard to invade,
so they guarantee relatively secure piece of territory. By playing on a larger
scale (playing higher, and perhaps less safely) his opponent might however sketch
a much bigger area, which if turned into real territory would guarantee him the
victory.

Also, there is the concept of outer influence. Player might have a strong wall
of stones facing the center, which — if used wisely — will provide invaluable help
in the middle game fights and indirectly provide score points. For example, if
you have a strong position right where the unstable enemy’s group is looking for
support, then you managed the situation well, remember that points are for both
dead enemy stones and enclosed intersections.

To sum up, player should try to balance the influence with territory, thick-
ness (thick positions have little or no weaknesses) with speed (fast positions have
potential to expand and secure large territories, yet they inherently have weak-
nesses) to maximize the gain and win the game. There exist whole anthologies of
books dealing with these concepts, we have just presented a small, shallow part
of it to illustrate the complexity of the matter. If you want to learn more, the
Sensei’s Library (2013a) is a good place to start.

11



2. Methodological Approach

2.1 Central Problem

We shall now formalize the problem we are dealing with. Suppose we have a set of
players P and for each player p ∈ P , we have a sample of p’s games, Gp. Moreover,
suppose that for each player pwe also have an externally given information yp ∈ R.
For example, this might be p’s strength. The central question is: What is the
relation between games Gp and the external information yp? The motivation is
that understanding this relation may help with the general understanding of yp.
In the example case where yp is strength of player p, this has obvious importance
— it might help a player to become stronger, deepen our understanding of Go,
or just improve the performance of Go playing programs.

The methodology in this work deals with a slightly weaker questions: What
can we deduce from games Gp? and How well can we predict the information yp
supposing we know Gp? We approach these questions by evaluating the games Gp

on a per-move basis and applying machine learning algorithms to the evaluations.
Generally, we consider the problem not to be an easy one. A crucial principial

obstacle is illustrated by a Go proverb1: “If you want to improve, do not look
on what moves do the professionals play, but why do they play them.” In some
situations a particular move is perfect, other times the same move is no good
— without reasoning about why are the moves played, we cannot hope to fully
tackle the problem. Moreover, there are many other factors hindering the process,
to name a few:

• Often, we are dealing with small samples of data.

• The set of games Gp may be taken from a larger interval of time, during
which the yp might have changed considerably.

• The uniqueness of every single game introduces inhomogeneities into the
data.

• Games might have different time setup. For example, very fast “blitz”
games (time for one move is very small) do not make it possible to examine
the positions thoroughly; these games are mainly played by intuition.

• During online games, players might not be concentrated fully on each game,
resulting in unstable performances. For example, this is the case when
opponents are from different timezones (for instance, one player is playing
in the morning, the other one in the night) as noticed in (Sensei’s Library,
2013f).

2.2 Processing Overview

The processing pathway presented in this work follows the structure from our
previous paper (Baudǐs – Moudř́ık, 2012). The pathway has two logical parts

1See (Sensei’s Library, 2013e) for more proverbs.
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Figure 2.1: Simplified overview of the processing of data. Player’s games Gp

are processed using Feature extraction part (FE). The resulting feature vector vp
serves as an input for the Machine learning part (ML) which outputs predicted
y′. For players from the training dataset, the machine learning methods learn
from vp and the external information yp.

— feature extraction step, where we transform a set of player’s games into an
evaluation vector, and machine learning, where we learn the dependency between
evaluation vectors v of different players and the information y we study in each
particular dataset.

Dataset

Dataset is a set of tuples where the first element represents games Gp of a play-
er, and the second element represents the external information yp ∈ R we are
studying.

D = {(GCi, yi), . . .}

Because a game is played by two players and we need to distinguish between
them, each game is accompanied with color of the player of interest (p’s color).
To emphasize this, we use GCp instead of Gp. The GCp is a set of tuples GCp =
{(game1, color1), . . .} (we will call it a set of colored games of player p).

Feature extraction

The goal of the feature extraction part is to make a complex evaluation v ∈ R
f

out of a set of colored games GC. The process is detailed in Chapter 3.

Machine learning

The machine learning part tries to capture the dependency between evaluation
vectors vp and the external information yp. Details are given in Chapter 4.
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3. Feature Extraction

This chapter presents a methodology for extracting information from a set of
colored games GC (see Section 2.2 for definitions).

In some of the methods below, we will need a set of games, we call it A,
that reasonably represents all the games from the dataset D. By a reasonable
representation we mean that the set A has the same (or almost the same) dis-
tribution of moves and other “events” of interest. All the games from D serve
ideally, typically some reasonably large subset of D performs well, while saving
computational resources.

The feature extractors basically map a set of colored games to a feature vector:

Definition. A feature extractor is a function

f : f(GC) = v

where GC is a set of colored games, and v is the resulting feature vector.

In the sections to come, we will separately present feature extractors f we have
used. The machine learning methods in Chapter 4 will use the concatenation of
these different features.

In the following text, we distinguish between raw features — the per-move
features matched by Pachi Go engine (see the next section) — and normal features
— results of applying aforementioned feature extractors on a set of colored games.
The features are computed using the information from the raw features. Also,
any single element vi (of a feature vector v) is called an attribute.

The implementation details are given in Appendix B.

3.1 Raw Features and Pachi

To extract the raw features, we have used the Pachi Go engine (Baudǐs et al.,
2012). Apart from being quite a good-performing Go bot, Pachi engine has
a replay mode, that scans a single game on a per-move basis. For each move, it
outputs a combination (called pattern) of several raw features (key-valued pairs).
These raw features include:

• atari flag — whether the move put enemy stones in atari,

• atari escape flag — whether the move saved own stones from atari,

• capture — number of enemy stones the move captured,

• contiguity to last move — the gridcular distance (presented below) from
the last move,

• board edge distance — the distance from the nearest edge of the board,

• spatial pattern — configuration of stones around the played move.

14



Figure 3.1: An example spatial pattern of size 6. The dashed parts of the goban
are not regarded.

The spatial patterns are always normalized (using a dictionary, below) to be
Black to play and to be invariant under rotation and symmetry. For each move,
spatial neighborhoods of sizes 2 to 6 in gridcular metric are matched.

For example, the following pattern

(border : 2, cont : 5, spatial : 88)

has three raw features. The first one, the distance from the board edge is 2,
which means that the move is on the third line. The contiguity feature says that
the gridcular distance from the last move is 5. From Figure 3.2, we can see that
distance 5 is the horse move approach (both Go and Chess have what is called
a horse move, with the same L-shape).

The last feature — spatial pattern — gives index to the spatial dictionary
(below), the particular pattern for this example is shown in Figure 3.1. From the
figure, we can see that the move was probably some low counter-extension

(or invasion) to answer .

Gridcular metric

Gridcular metric approximates a circle on the square grid of a goban. It is defined
by the formula:

d(x, y) = |δx|+ |δy|+max(|δx|, |δy|)

The gridcular metric has been successfully applied for pattern-matching in
e.g. (Stern et al., 2006; Coulom, 2007). The gridcular distance is illustrated in
Figure 3.2.

Spatial dictionary

Before running the engine on a per game basis, the engine is run on a large
number of games (the A set) to create a dictionary of spatial patterns that have
occurred at least N times, N chosen so that the number of spatial patterns is
sufficiently large. The raw spatial feature matcher uses this dictionary to look
for spatial patterns (and their rotations, color inversions if White is to play,
symmetrization) during the matching.
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Figure 3.2: The gridcular metric on a 7 × 7 grid. The numbers show the grid-
cular distance from the center, the background lightens with increasing distance.
Inspired by (Stern et al., 2006).

3.2 Pattern Features

This section presents a pattern feature extractor that tries to capture a distribu-
tion of patterns among the colored games GC. In this case the pattern is a tuple
consisting of the atari flag (and atari escape flag) and the spatial pattern raw
features. Other raw features are ignored because the use of more raw features
causes a big granularity of the data — a lot of patterns that are not played often.

This feature extractor counts the number of occurrences of the top N most
played patterns from GC. The counts are then normalized using one of the
normalization schemes. The process is detailed in Algorithm 1.

We presented this feature in (Baudǐs – Moudř́ık, 2012); this work extends it
slightly by testing two more normalization schemes (independent and proportion-
al) in addition to original linear normalization1.

Normalization

The normalization step in Algorithm 1 (line 11 in the pseudocode) is very impor-
tant to maintain the invariance under number of games in the GC. Without it,
the values of ~v would increase proportionally to |GC|. To alleviate this, we use
one of following scaling schemes:

• independent normalization — ~v ← ~v/|GC|,

• proportional normalization — ~v ← ~v/sum(~v),

• linear normalization — min(~v) is mapped to −1, max(~v) to 1, the rest
is mapped linearly into the interval (−1, 1).

1In the (Baudǐs – Moudř́ık, 2012), we also used what could be called logarithmic normal-
ization but it did not perform well; see the paper for details.
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Algorithm 1: Pattern Feature Extractor

input : set of colored games GC, number of top patterns N , set of all
games A

output: feature vector ~v

1 TopPatterns ← PachiGatherTopNPatterns(A, N);
2 ~v ← Zeros(N);
3 foreach (game, color) in GC do
4 foreach pattern in PachiGatherPatterns(game, color) do
5 if pattern in TopPatterns then
6 i ← IndexOf(pattern, TopPatterns);
7 ~v[i]← ~v[i] + 1 ;

8 end

9 end

10 end
11 ~v ← Normalize(~v);
12 return ~v

3.3 Local Sente (Gote) Sequences

Besides the pattern feature, we have implemented some higher level features that
try to capture deeper concepts within the data. The first one of them deals with
sente and gote plays. We have discussed (see Chapter 1.3.2) that a sente play is
a move the opponent has to respond to or something bad happens to him. Often,
the reply is local, as we have seen in Figure 1.4.

Assuming that sente and gote sequences are always local (assumption of lo-
cality of replies) and that all local plays are part of some sente or gote sequence
(assumption of exclusivity) is the basis of a method we have devised to make
statistics of sente and gote play within a game.

Certainly, the assumption of the locality of replies does not always hold. Some-
times, a response to a sente move has to be played on the other side of board.
Imagine, for example, that a large white group has one eye and it has only two
possibilities to make the second eye. If Black neutralizes one of them, White
should not hesitate to make the second eye or his whole group dies. Because the
two possible eyes of White’s group might be distant from each other, the Black’s
play that destroyed one of the possible eyes might not be answered locally, though
it certainly is a sente move.

Neither the second assumption always holds. Two moves that are played
next to each other might be separate gote plays, instead of a part of one larger
exchange.

Even though the assumptions are not always true, the resulting feature vector
proves to be useful, as detailed in Chapter 5.1.2.

In the following, we view a game g as a sequence of moves:

g = (m1, m2, m3, . . . , mlast)

We consider the pass to be a special kind of move. Now, we shall formalize the
concept of locality within the g sequence.
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Definition. (All the following definitions are considered to be within the g se-
quence.)

We say that a move mi from g is ω-local if its gridcular distance from the
previously played move mi−1 is less or equal to ω.

We say that a sequence Mi,j = (mi, mi+1, . . . , mj) for any 1 ≤ i ≤ j ≤ |g| is
ω-local if ∀x, i < x ≤ j, move mx is ω-local.

We say that an ω-local sequence Mi,j is maximal if it cannot be extended into
ω-local M ′ by adding move mi−1 or mj+1.

We say that a maximal ω-local sequence Mi,j is sente if color(mi) 6= color(mj).
Similarly, the Mi,j is said to be gote if color(mi) = color(mj). The color(m) is
a color of a player who played the move m.

The pass is not considered to be ω-local.

Lemma 1. For a fixed ω, the game sequence g can be covered by a set of disjunct
maximal ω-local subsequences.

Proof. It is obvious that if we have two neighboring ω-local sequences Mi,j and
Mj+1,k such that also the move mj+1 is ω-local, we can merge the two sequences
into Mi,k which is also ω-local.

Therefore, if we start by splitting the g into |g| disjunct ω-local subsequences
Mi,i of size 1, we obtain the cover by repeatedly applying the merge (if it is pos-
sible) on neighboring pairs of these sequences until no more merges are possible.

The final set of sequences, Cover, has only ω-local sequences because the
merge operation preserves the locality and the initial splits Mii were ω-local;
they are maximal, because no more merges are possible and they are a cover
because the initial set was a cover and no elements are skipped during the merge
operation.

Based on the Cover set, we can easily count the approximated statistics of
sente and gote plays as Algorithm 2 shows. The function IsSente is a predicate
to test if the maximal ω-local sequence is sente as defined above. The gridcular
distance to determine the ω-locality is taken from the contiguity raw feature.

3.4 Histograms Features

This section presents two histogram-based feature extractors that focus on cap-
turing distributions of certain events within the games.

3.4.1 Border Distance

The task of the first histogram feature is to capture the distribution of distances
from the board edge. In Chapter 1.3.3, we have briefly mentioned that in the
opening, playing on third line generally stresses secure territory, while higher lines
(e.g. the 4th) stress influence. Frequently, the difference of one line has a huge
impact on the flow of the game. We could do a simple statistics of the border
distance, but because the game has stages that differ significantly from each other
(see Section 1.3.1), one has a feeling that some sort of differentiation based on
the game stages should be used. One simple heuristic to tell the current stage is
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Algorithm 2: Local Sequence Extractor

input : set of colored games GC, locality threshold ω
output: feature vector ~v

1 S ← 0;
2 G ← 0;
3 foreach (game, color) in GC do

/* The Cover function returns the Cover of game from the

proof of Lemma 1 with respect to ω. */

4 foreach M in Cover(game, ω) do
/* We ignore opponent’s sente and gote sequences. */

5 if M [1] == color then
6 if IsSente(M) then
7 S ← S + 1;
8 else
9 G← G+ 1;

10 end

11 end

12 end

13 end
/* We output the average number of Sente and Gote sequences

per game, and also their average difference. */

14 ~v ← (S,G,G− S)/|GC|;
15 return ~v
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the number of the current move. (For instance, we can roughly say that first 10
moves are usually the early opening.)

We have used a two-dimensional histogram in this feature extractor. The
first dimension is specified by the move’s border distance, the second one by the
number of the current move. The size of each dimension is given by intervals
dividing the domains. For example, if we use ByMoves = {〈1, 10〉, (10,∞)} for
the move coordinate (motivation is to distinguish between opening — say first 10
moves — and the rest of the game), and ByDist = {〈1, 3〉, 〈4,∞)} (distinguish
playing on first three lines to stress territory from playing higher to stress the
influence) to split the border distance dimension, then we obtain a histogram of
total |ByMoves|∗|ByDist| = 4 elements. In the end, the histogram is normalized
to establish invariancy under the number of games scanned (by dividing the
histogram elements by |GC|).

The pseudocode is shown in Algorithm 3. The function IndexOfElement

(element, Intervals) returns the index of interval int ∈ Intervals, such that
element ∈ int.

Algorithm 3: Border Distance Histogram Extractor

input : set of colored games GC, an ordered set of disjunct intervals
ByDist, an ordered set of disjunct intervals ByMoves

output: feature vector ~v

1 V ← Zeros(|ByDist|, |ByMoves|) ;
2 foreach (game, color) in GC do
3 foreach move in game do

/* We ignore the opponent’s moves. */

4 if ColorOf(move) == color then
5 bdist← GetBorderDistance(move);
6 X ← IndexOfElement(bdist, ByDist);
7 movenum← GetMoveNumber(move);
8 Y ← IndexOfElement(movenum, ByMoves);
9 V [X ][Y ]← V [X ][Y ] + 1;

10 end

11 end

12 end
/* Serialize the normalized matrix into a vector. */

13 ~v ← RowWise(V/|GC|);
14 return ~v

3.4.2 Captured Stones

The second histogram feature reflects the distribution of captured stones in dif-
ferent game stages. The motivation behind this is the fact that one would expect
generally different numbers of captives in the opening — where the stones are not
usually in direct aggressive contact (see Section 1.3.1) — and in the endgame,
where e.g. small captures are quite common.

The methodology here is very similar to the previous feature extractor. The
first dimension distinguishes between the game stages, the second dimension has

20



a fixed size of three bins. Along the number of captives of the player of interest
(the first bin), we also count the number of his opponent’s captives (the second
bin) and a difference between the two numbers (the third bin). See Algorithm 4.

Algorithm 4: Captured Stones Histogram Extractor

input : set of colored games GC, an ordered set of disjunct intervals
ByMoves

output: feature vector ~v

1 V ← Zeros(3, |ByMoves|) ;
2 foreach (game, color) in GC do
3 foreach move in game do
4 if ColorOf(move) == color then
5 X = 0 ; /* The player. */

6 else
7 X = 1 ; /* The opponent. */

8 end
9 movenum← GetMoveNumber(move);

10 Y ← IndexOfElement(movenum, ByMoves);
11 capt← GetNumCapturedStones(move);
12 V [X ][Y ]← V [X ][Y ] + capt;
13 V [2][Y ]← V [0][Y ]− V [1][Y ];

14 end

15 end
/* Serialize the normalized matrix into a vector. */

16 ~v ← RowWise(V/|GC|);
17 return ~v

3.5 Win/Loss Statistics

Finally, we came up with a pair of very simple features which make statistics
of wins and losses and whether they were by points or by resignation2. (When
player resigns, he declares his loss without finishing the game.)

For example, quite a lot of weak players continues playing already lost games
until the end, mainly because their counting is not very good (they do not know
there is no way to win), while professionals do not hesitate to resign if they think
that nothing can be done.

For the colored games of GC we count how many times did the player of
interest:

• win by counting,

• win by resignation,

2Sometimes — mainly in online games — players might also lose on time. In rare cases, the
game might as well end as a tie or be unfinished or forfeited. We disregard such games in this
feature because the frequency of these events is so small it would require a very large dataset
to utilize them reliably.
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• lost by counting,

• and lost by resignation.

The result of the first feature extractor are these four numbers, divided by |GC|
to maintain the invariancy under number of games in GC.

Furthermore, for the games won or lost by counting, we count the average
size of the win or loss in points. Similarly, these two numbers in a vector form
the output of the second feature extractor.
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4. Machine Learning

This chapter presents machine learning methods we have used throughout this
work. Most of the methods are well-documented in literature, so we only give
a brief overview here.

In this chapter, suppose we have a set of data

Tr = {(x1, y1), . . . , (xN , yN)}, ∀i : xi ∈ R
p, yi ∈ R

and we want to find a function r which is able to predict the value yi from xi

with a reasonable accuracy and can generalize this dependency to unseen pairs.

Definition. A regression function is a function

r : Rp → R

where p is a dimension of space of vectors of predictor variables. We also call
the domain R

p the feature space. The codomain R is called a space of dependent
variables.

The machine learning methods presented here are regarded as learners. For
a given data Tr, the learner should output a regression function (also called
predictor) which performs the regression of the dependent variable, as learned
from the data.

Definition. A learner is a function

l : T → R

where T is a space of all training datasets, and R is a space of all regression
functions.

Of course, some regression functions perform better than others. Mainly, this
is because each learner has different (inherent) assumptions about the form of the
function it is looking for; we call this the inductive bias (of the learner and the
underlying model). For example, linear regression assumes that the dependency
between predictor variables and the dependent variables is linear. Often, we
deal with data where the underlying dependency and properties of the data are
unknown, so it is hard to say whether assumptions of a particular model are right.
To overcome this problem, usually a bunch of models is tried and the best one is
chosen.

Another approach, the one we use in this work, is not to choose the best, but
rather try to combine the different approaches to create one higher-level method.
Because different methods have different biases, they might be able to capture
different dependencies in the data. If we combined the methods (base learners)
usefully, we could get better performance than with the “use the best learner”
approach. We call this the ensemble meta-learning.

Definition. A meta-learner is a function

ml : P(L)→ L

where L is a space of all learners and P denotes a power set.
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A meta-learner takes a set of learners Bl and returns a learner, possibly a re-
sult of aggregation of learners in Bl.

The different base learners are presented in Section 4.1. The ensemble meta-
learners are shown in Section 4.2, and in Section 4.3 we detail the process of
choosing the right base-learners into the ensemble. Finally, Section 4.4 discusses
evaluation of learners and feature extractors and procedures for comparison of
their performances.

The implementation details are given in Appendix B.

4.1 Base Learners Overview

4.1.1 Mean Regression

The mean regression is a very simple method, which we use as a reference for
comparing performances of other learners.1 It simply outputs the mean of the y’s
in the training set and is thus constant regardless of the input x.

mean(x) =
1

|Tr|

∑

(x′,y′)∈Tr

y′

4.1.2 Neural Networks

Output

Input

Hidden

Figure 4.1: Illustration of the layered
topology of a simple feed-forward
neural network. The labels mark dif-
ferent layers.

Artificial neural networks (NN) are stan-
dard technique used for function approx-
imation. The idea behind this model is
inspired by the function of biological neu-
ral tissues. The artificial neural networks
are known for their ability to find depen-
dencies between inputs and outputs in the
training data and generalize this knowl-
edge to previously unseen inputs. This
section presents a very crude overview of
the method, see the monograph by Haykin
(1998) to learn more.

The artificial neural network is a net-
work consisting of interconnected compu-
tational units called neurons. Each neuron
has several inputs xj and one output y. For
each input xj , the neuron has a weight wj,
which is incorporated into the computation as follows:

y = f(
∑

j∈J

wjxj)

where the f is a so-called activation function, for instance the sigmoid2.

1A random regression is also quite frequently used for this purpose.
2A special case of the logistic function σ(x) = (1+ e−rx)−1, where r controls growth of the

function.
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There are many topologies (defining the connections) of the artificial neural
networks in use. We have used the typical feed-forward network topology, where
neurons are organized in layers (one input layer, arbitrary number of hidden
layers, one output layer). The layers are ordered so that the input to each layer
only comes from the previous layer, as shown in Figure 4.1. The input layer has
the same dimension as the input data, the outputs of these neurons are set to be
the input data. Computation of other units proceeds by layers according to the
formula above. The activity of the output layer is said to be the result of the
computation.

Training

To be able to approximate the target function, the weights of the neurons wij

need to be set up properly. This is a typical optimization problem, we are trying
to minimize the error ǫ on the training data. In this work, we use the iterative
first-order gradient-descend method called RPROP (Riedmiller – Braun, 1993).
Usually, the maximal number of iterations is bounded by a limit, max.

4.1.3 k-Nearest Neighbor Regression

The k-nearest neighbor algorithm (Cover – Hart, 1967) is a commonly used ma-
chine learning tool. The assumption of this model is that we can deduce the
dependent y by looking at vectors from the feature space that are close to the x.

Definition. For a fixed k and x,
let the Nb = {x′

1, . . . , x
′
k} denote a set of k closest vectors to x from the T

with respect to some metric δ;
let D be a vector of distances, such that Di = δ(x, x′

i);
for each x′

i, let y
′
i be the associated dependent variable from the training set

T .

For a given x, the idea is to find the nearest k vectors (the Nb set) from
the training set, and then estimate the dependent variable y from the associated
y′1, . . . , y

′
k.

In this work, we have used the Manhattan (p-1) and Euclidean (p-2) distances
as δ. To infer the y, we define the model to be:

y =

∑k

i=1w(Di)y
′
i∑k

i=1w(Di)

for some weighting function w. We have used the inverse of the distance
between x and the particular neighbor instance:

w(Di) = 1/Dα
i

where α is a parameter specifying the effect of increasing distance. When the α
is equal to zero, we obtain the averaging scheme, where the weights do not depend
on the distance Di — all the k neighbors are valued equally. With increasing α,
the x′

i instances closer to x are preferred over more distant neighbors. When the
α goes to infinity, the method essentially becomes one-nearest neighbor.
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4.1.4 PLS

The family of partial least squares (PLS) methods assumes that the observed
variables can be modelled by means of a few latent variables (their number is
specified by a parameter l). The method projects the data onto this latent model
in a way that minimizes error. The process is somewhat similar to Principal
Component Regression.

For a good overview, see the work by Rosipal – Krämer (2006).

4.2 Ensemble Learners

In the introduction of this chapter, we have discussed that sometimes, a com-
bination of learners can have better performance than the “winner takes all”
approach. In practise, the three most used families of ensemble learning methods
are bagging, boosting and stacking. In this work, we have experimented with the
bagging and stacking. These are detailed in the rest of this section.

4.2.1 Bagging

Bagging3 is a simple ensemble method introduced by (Breiman, 1996). The idea
in bagging is to train a particular base learner bl on differently sampled data
and aggregate the results. The method has one parameter t which specifies the
number of the data samples. Each of them is made by randomly choosing |Tr|
elements from training set Tr with repetition. The base learner bl is trained on
each of these samples. The regression simply averages results from the t resulting
models.

Breiman (1996) discusses, that this procedure is especially useful for learners
bl which are unstable — small perturbations in the data have big impact on
the resulting model. Aggregating the bootstrapped models essentially introduces
robustness to such models. Examples of learners where the bagging is beneficial
are neural networks (where overfitting is often a serious problem) and regression
trees (especially variants without pruning) — Random Forests presented beneath
are essentially bagged tree learners.

On the other hand, it needs to be said that bagging can worsen the perfor-
mances of learners that are stable.

4.2.2 Stacking

The stacking (or stacked generalization) is a more sophisticated approach. The
original idea was pioneered by Wolpert (1992). The method is basically a two
level hierarchical model of learners with a clever scheme for training. The first
level is composed by an ensemble of (possibly different) learners. The second
level is a single learner which aggregates guesses from the 1st level models and
outputs the final prediction. Figure 4.2 shows the topology.

The training dataset is divided into smaller parts (by cross-validation, see
Section 4.4.1). The 1st level learners are trained on some of them and their
generalization biases are measured by testing their performance on the rest. The

3The name bagging stands for bootstrapped aggregating.
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2nd level learner learns to correct these — it learns what the correct output
is, given what the 1st level predictors output. Algorithm 5 hopes to make the
procedure clear.

Having different base learners often proves to be effective. The performance
of stacking is usually better than the best of the base learners on its own. It is not
the case, however, that having badly performing learners in the ensemble does
not worsen the performance. Choosing the right set of 1st level learners is very
important if we are to attain the best performance, as is the choice of the 2nd
level aggregating learner and the number of folds for the cross-validation step.
We discuss this matter in Section 4.3.

1st Level

2nd Level

Input

A B C D

E

Figure 4.2: The topology of the stacking ensemble method. A, B, C and D are
the level 1 learners, E is the level 2 learner.

Algorithm 5: Stacking

input : an ordered set of 1st level learners ensemble, a level 2 learner l2,
training data Tr, number of folds Folds

output: regression function f

/* Training set for the level 2 learner. */

1 L2Tr ← {};
2 foreach (Tr′, T s′) in CrossValidation(Tr, Folds) do

/* The level 1 learners trained on split Tr′. */

3 L1← (ensemble0(Tr
′), . . . , ensemblen(Tr

′));
4 foreach (x′, y′) in Ts′ do

/* Responses of level 1 predictors to unseen x′ and the

real reply y′. */

5 L2Tr ← L2Tr ∪ {((L10(x
′), . . . , L1n(x

′)), y′)};

6 end

7 end
/* Train the level 1 learners on the real data. */

8 L1← (ensemble0(Tr), . . . , ensemblen(Tr));
/* Train the level 2 learner on the prepared data. */

9 L2← l2(L2Tr);
10 return Compose(L1, L2);
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4.2.3 Random Forests

Random Forests (Breiman, 2001) utilize an ensemble of tree learners to predict
the dependent value (for an overview of the regression trees, see (Breiman et al.,
1984)).

Each tree from the forest (of size N) is trained on an independently chosen
subset of training data, exactly as the bagging in Section 4.2.1 does.

However, there is one tweak of the process of learning one tree. During each
training step a random subset of attributes is chosen, and the tree node is split
on the best attribute of this subset. See the Breiman’s paper for details.

The aggregation step is the same as in the bagging, simply averaging the
outputs of the trees in the forest.

4.3 Choosing the Best Stacked Ensemble – Ge-

netic Algorithm

We have discussed that ensemble learning might be beneficial in terms of per-
formance. For stacking, it is desirable to form the ensemble out of diverse base
learners. The problem however is, how to choose the learners into the ensemble.
This becomes apparent once one tries to hand-tune the parameters of different
base-learners, find the best combination of them and find the best aggregating
2nd level learner.

We have used a simple genetic algorithm (GA) to search the space of possible
ensembles for the stacking. Genetic algorithms are an universal optimization tool,
see (Whitley, 1994) for a good tutorial. The general procedure is iterative. In each
iteration, individuals (candidate solutions) are evaluated using a fitness function
and an intermediate population is formed by randomly choosing individuals, with
probability proportional to the fitness (roulette selection). From this intermediate
population, the population for the next step is taken by making pairwise crossover
operation and mutation on the newly formed individuals.

In the text below, we operate with a set of base learners BL, from which we
choose the learners into the ensemble. We should note that the set of base learners
BL is not strictly limited to learners we have listed as base in Section 4.1 — we use
both differently parameterized base learners and various bagged learners (neural
networks and forests).

We have used a very simple encoding for an individual. An individual is
a triple of (I, Folds, ~v). The first two values I and Folds define the 2nd level
learner. I is the index of the 2nd level aggregating learner in BL and Folds is
the number of folds for the stacking procedure. The vector ~v of size |BL| marks
a subset of BL that forms the ensemble: ~vi = 1 if the base learner BLi belongs
to the ensemble; ~vi = 0 when it does not.

We have used two independent mutations to modify the individuals. Firstly,
with probability PmM , we either change I to any of 1 . . . |BL|, or we change the
number of Folds to 2 . . . 6, (MutateM in the pseudocode). Whether we change I,
or Folds is decided using a further random coin toss. Secondly, with probability
Pmv a random position i in v is selected and the bit vi is swapped, (MutateV in
the pseudocode).
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The crossover operation of parents P = (I, Folds, ~v) and P ′ = (I ′, F olds′, ~v′)
selects a random position i ∈ {1 . . . |BL|} and outputs the following tuple

(I, Folds, (v1, . . . , vi, v
′
i+1, . . . , v

′
|BL|))

as the new individual. Please note that the index I (and number of Folds) of
the 2nd level learner is taken from the first parent P . This is compensated for by
the fact that crossover is always performed in pairs (lines 8 – 9 in Algorithm 6).

The fitness function we have used is inversely proportional to RMSE error
of the resulting stacked ensemble.

Also, to make sure we do not lose the best solution, we have used elitism,
which brings the top E individuals unchanged into the next generation.

Algorithm 6: Genetic Algorithm for finding optimal stacking ensemble

input : size of the population S, size of the elite E, probabilities of
mutation PmM and Pmv, maximal number of steps Max

output: The best individual.

1 Pop← RandomPopulation(S);
/* The best individual so far. */

2 Best← {};
3 foreach iteration in 1 . . .Max do
4 evaluation← Fitness(Pop);

/* PI is the intermediate population. */

5 PI ← RouletteSelection(Pop, evaluation);
/* PN is the intermediate population after Crossover. */

6 PN ← {};
7 foreach i in 1 . . . (S − E)/2 do
8 PN ← PN ∪ Crossover(PI[2 ∗ i], PI[2 ∗ i+ 1]) ;
9 PN ← PN ∪ Crossover(PI[2 ∗ i+ 1], PI[2 ∗ i]) ;

10 end
/* Save the best individual. */

11 Best← TakeTop(Pop, evaluation, 1);
/* Top E best continue unchanged. */

12 Pop← TakeTop(Pop, evaluation, E);
13 foreach individual in PN do
14 if Rnd(0,1) < PmM then
15 individual←MutateM(individual);
16 end
17 if Rnd(0,1) < Pmv then
18 individual←MutateV(individual);
19 end
20 Pop← Pop ∪{individual};

21 end

22 end
23 return Best;
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4.4 Evaluating Learners

To compare performances of different regression functions (learners), we need
a reliable metric. The goal is to estimate the performance of a particular regres-
sion function on real unseen data. We can estimate this performance by splitting
the data we have into parts that are only used for training (Tr) and testing (Ts).

4.4.1 Cross-Validation

Cross-validation is a standard statistical technique for estimation of parameters.
The idea is to split the data into k disjunct subsets (called folds), and then
iteratively compose the training and testing sets and measure errors. In each of
the k iterations, k-th fold is chosen as the testing data, and all the remaining k−1
folds form the training data. The division into the folds is done randomly, and
so that the folds have approximately the same size (in cases where the number
of samples |D| is not divisible by k, some folds are slightly smaller than others).
Please note that each sample from the data is a part of the testing fold exactly
once (it is part of a training set k − 1 times).

Refer to (Kohavi, 1995) to learn more.

4.4.2 Error Analysis

To evaluate a regression function r reliably, we are looking for a robust error
measure. Commonly, the mean square error is used:

MSE(r) =
1

|Ts|

∑

(x,y)∈Ts

(r(x)− y)2

Where r is trained on the training data Tr. The MSE is an estimate of
variance of the population of errors.

In this work, we have used the MSE’s square-root, RMSE, which is an esti-
mate of standard deviation of the errors. Because the square root is a monotoni-
cally increasing function, sorting the learners based on MSE and RMSE yields
the same order. Moreover, the RMSE has a clear interpretation — under the
assumption of normality of the distribution of errors with zero mean, confidence
intervals on precision of the regression function r can be given.

P (−σ ≤ y − y′ ≤ σ) = Φ(1)− Φ(−1) ≈ 0.6827

P (−2σ ≤ y − y′ ≤ 2σ) = Φ(2)− Φ(−2) ≈ 0.9545

P (−3σ ≤ y − y′ ≤ 3σ) = Φ(3)− Φ(−3) ≈ 0.9973

Where Φ is the cumulative distribution function of the standard normal dis-
tribution. For instance, we can say that with the probability of 95%, a prediction
y′ = r(x) for a feature vector x is within a range of 2σ from the true value y. Of
course, these estimates only hold when the training and testing data are sampled
reliably (e.g. with many-fold cross-validation) and even more importantly, when
the dataset reflects the real distribution of the problem’s data.
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4.5 Evaluating Features and Attributes

We have devised a number of features that try to capture information from a set of
games. Each of them is based on different rationale and assumptions. A numerical
measure of their performance (feature evaluation) is beneficial from two main
points of view.

Firstly, evaluating the features tests whether (and how much) do the particular
assumptions hold. Apart from being useful on its own, knowing what can be
assumed about data gives directions for further improvement. The second, rather
practical, benefit is that this feature evaluation allows to search for the best
parameters of the feature extractors.

Besides the features as a whole, we can also analyze the performance of par-
ticular attributes4. An analysis of attributes might be useful in numerous appli-
cations. For instance, if we find out that there is a linear dependency between
attribute of playing a particular move and the strength of a player, we could warn
the user: “this move is usually not very good”. This might also have applications
in computer Go, as we discuss in Chapter 6. Of course, correlation does not im-
ply causation and simply playing the “good” move more often does not make us
really stronger.5 Still, the dependencies give hints about some deeper imbalance
in moves one plays.

4.5.1 Feature Evaluation

We have used a simple scheme for feature evaluation. The assumption of this
scheme is that we are interested in features which perform good. We define the
performance of the feature to be the performance of a fixed learner (the same
for all the features). Of course, the learner has to be able to benefit from the
usefulness of the features.

Definition. For a fixed learner lev the RMSE error of feature extractor f on
data:

D = {(GCi, yi), . . .}

is defined as the RMSE error of lev on

T = {(f(GC), y), . . .}, (GC, y) ∈ D

4.5.2 Attribute Evaluation

To analyze performances of single attributes, we have used the following scheme.
For the k-th attribute, we inspect the dependency between its values xik (value
of kth attribute in the ith input vector) and the target variable y in the data
Tr = {(xi, yi)}, i = 1 . . .N .

Xk = (x1k, . . . , xNk)

4Remember from Chapter 3, that we distinguish between features and attributes. Example
of features are the pattern features, local sequence feature or the histogram features. An
attribute is a particular number vi, where v is a feature vector. For example, if v is a particular
pattern feature vector, vi is an attribute giving relative frequency of pattern i.

5The problem of course is that the “good” move is not good under all circumstances and
one should rationalize why and when is it so.
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Y = (y1, . . . , yN)

The linear dependency between X and Y is measured by the Pearson’s cor-
relation coefficient r, (Rodgers – Nicewander, 1988):

r =
cov(X, Y )

σXσY

Pearson’s r has a range of 〈−1, 1〉, where 1 means perfect linear dependence
(y’s grow with growing xk’s), 0 means no linear dependence and -1 signals that
both vectors are anticorrelated (y’s decrease with growing xk’s). In the following
text, we shorten the rX,Y to r when the variables X and Y are clear from the
text.

Limiting ourselves to linear dependencies is not a major issue. Because the
problem is quite hard, the dependencies are rather weak even with the simplest
linear model. If we were to test more complex dependencies, much more data
would be needed.
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5. Experiments

5.1 Strength

The major application of the methodology developed throughout the thesis is
the prediction of strength of players. This part documents the process we un-
dertook. Firstly, we present the dataset we have gathered (Section 5.1.1). Then,
performance of different feature extractors (Section 5.1.2) is analyzed. Next, we
investigate possibilities of strength prediction (Section 5.1.3). Finally, we scruti-
nize single attributes and their relationship with the strength (Section 5.1.4).

5.1.1 Dataset

We have collected a large sample of games from the publicly available archives
of the Kiseido Go server (Shubert, 2013b). The sample consists of over 100 000
records of games in the .sgf format (Hollosi, 2006).

For each rank r in the range of 6-dan to 20-kyu, we gathered a list of players Pr

of the particular rank. To avoid biases, the sample only consists of games played
on 19 × 19 goban without handicap stones.1 The set of colored games GCp for
a player p ∈ Pr consists of the games player p played when he had the rank r. We
only use the GCp if the number of games is not smaller than 10 games. Similarly,
if the player played more than 50 games when at rank r, we randomly sampled
k of them, where k was uniformly randomly chosen from interval 〈10, 50〉.2 The
number of games is limited in this manner because for some ranks it is hard to
find players with large samples — i.e. weak players and beginners (e.g. on 20-
kyu) usually improve very fast. For each of the 26 ranks, we gathered 120 such
GCp. The distribution of number of games in GCp is comparable for all the ranks,
as Figure 5.1 shows. The target variable for regression y directly corresponds to
the ranks: y = 20 for rank of 20-kyu, y = 1 for 1-kyu, y = 0 for 1-dan, y = −5
for 6-dan, other values similarly. (With increasing strength, the y decreases.)

5.1.2 Feature Evaluation

We evaluated the performance of various features as discussed in Section 4.5.1. We
have used the initial hand tuned learner (from Appendix C.3) as the evaluation
learner lev.

3 We have evaluated many different parameterisations for different
features, as detailed in Appendix C.1. Table 5.1 shows the best parameters found
for each feature extractor along with the RMSE scores.

1Gameplay and strategies on different board sizes differs. Similarly, handicap games force
the stronger player to play more aggressively than he would in an even game.

2By cutting the number of games to a fixed number (say 50) for large samples, we would
create an artificial disproportion in sizes of GCp, which could introduce bias into the process.

3 With the exception of the Win/Loss points statistic, where we changed the number of
components of PLS regression to 2 (from 3 in lev). This was needed because this feature has
small dimension (2) which causes instability of the PLS with 3 latent variables.
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Figure 5.1: Boxplot of game sample sizes. The box spans between 25th and 75th
percentile, the center line marks the mean value. The whiskers cover 95% of the
population. The kyu and dan ranks are shortened to k and d.

Feature Extractor RMSE Parameters
Pattern feature 2.755 N = 1000, independent normalization,

A randomly sampled as 20% of all the games.

Local sequences 5.754 ω = 10

Border distance 5.448 ByDist = {〈1, 2〉, 〈3〉, 〈4〉, 〈5,∞)},

ByMoves = {〈1, 10〉, 〈11, 64〉, 〈65, 200〉, 〈201,∞)}

Captured stones 5.878 ByMoves = {〈1, 60〉, 〈61, 240〉, 〈241,∞)}

Win/Loss statistics 6.806 —
Win/Loss points 5.158 — (see Footnote 3 on page 33)

None 7.507 (obtained by mean regression learner)

Table 5.1: Comparison of the best feature extractors of each kind. The complete
list of features evaluated is given in Appendix C.1. The learner used for evaluation
is given in Appendix C.3. The results were computed using 5-fold validation.
The last row shows performance of the mean regression learner and serves for
comparison.

5.1.3 Regression

In the process of finding the best learner, we started with a hand-tuned learner
shown in Appendix C.3. Using this learner (which we found to perform reasonably
well, as shown in Table 5.3) we evaluated different feature extractors (previous
section). At first the dataset was processed using the best feature extractors,
which were concatenated to form the data T for regression.

We then used the genetic algorithm (Section 4.3; abbreviated to GA) to find
the best performing stacked ensemble. The initial population was seeded by
the hand tuned learner. The parameters of the genetic algorithm are given in
Table 5.2.

Unfortunately, because of the large dimension of the feature vector (especially
the pattern feature which has dimension of 1000 in the best setting) and large
dataset (3120 samples), the time needed for a single iteration was very large in
this setting.4 To speed up the process, we used a smaller pattern feature size

4More than 15 hours for first iterations using parallel evaluation on Intel i3 - 4 core machine
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Parameter Value
Set of base learners BL Is given in Appendix C.2.

Population size S 16
Elite size E 1

Number of iterations Max 100
Mutation probability PmI 0.2
Mutation probability Pmv 0.5

Fitness function 1/RMSE of the resulting stacked learner. The
RMSE is computed using 5-fold cross-validation.

Table 5.2: The parameters of the genetic algorithm for the strength dataset.

Learner RMSE Mean cmp
Mean regression 7.507 1.00
Random Forrest 3.869 1.94

PLS 3.176 2.36
Bagged NN 2.701 2.78

Initial hand-tuned learner 2.635 2.85
Best GA stacking ensemble 2.607 2.88

Table 5.3: Regression performance of different learners on the full dataset. The
feature set used is shown in Table 5.1. The results were computed using 5-
fold cross-validation. Parameters of the best GA stacking ensemble are given in
Appendix C.4, the other learners are taken from the Initial hand-tuned learner
from Appendix C.3.

(400 top patterns instead of 1000) and we subsampled the dataset for computing
the fitness during the GA (by randomly taking 1/10 prior to the running of the
GA). We assume, that this is not a principial obstacle for finding the best learn-
er, since the down-sampling (and lowering the precision of the pattern feature)
should degrade the performance of the learners systematically — the ordering of
fitnesses is expected to be more or less the same, though the fitness values surely
differ. This is backed by the fact, that the best learner found by the GA scored
very well when run on the full dataset. The run of genetic algorithm took on
average approximately 2.5 hours per iteration, the machine specification is given
in Appendix C.6.

The performance of the best ensemble found by the GA (on the full dataset)
are given in Table 5.3 along with other learners to compare performances. The
resulting learner (Appendix C.4) is fairly complex as Figure 5.2 shows. Evolution
of the RMSE error in time is given in Figure 5.3.

5.1.4 Attribute Evaluation

We analysed different attributes for the best features from the previous section
using the methodology presented in Section 4.5.2. We studied attributes, which
were most strongly correlated with the strength of the player.

at 2.3GHz.
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Figure 5.2: Structure of the best stacking ensemble found by the Genetic Algo-
rithm. The circle marks a normal learner, with description within, the “cloud”
denotes a bagging learner. The corresponding bagged learner is connected using
the circle-ended arrow. Precise descriptions of the learners are given in Ap-
pendix C.4. Mean is the Mean regression, PLS Partial least squares regression,
RF Random Forrests, NN various neural networks and k-nn is obviously the
k-nearest neighbor learner.
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Figure 5.3: Evolution of RMSE error during the run of the genetic algorithm for
finding an optimal stacking ensemble for the strength data.
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In the following text, we present a few attributes with largest Pearson’s cor-
relation coefficient r along with general trends, more detailed list is given in
Appendix D.

Negatively correlated attributes (“strong players’ attributes”)

The attributes most strongly correlated with the increasing strength of player
(r < 0), are mainly a standard patterns with clear strategic meaning, or a part
of joseki sequence5.

The most strongly correlated attribute is the local sequence statistic, the av-
erage number of sente moves per game (r = −0.512). This backs the assumption
that the concept of sente is indeed very important.

The second most strongly correlated attribute (r = −0.480), the pattern
shown in Figure 5.4 (left), is a multi-purpose one-point jump. It can be found
being played under different circumstances. For instance, Black might want to
prevent possible invasion (which could be related to the white stone). The pattern
also matches a common move of expanding one’s territory, while preventing the
opponent to block this expansion.

The third strongest attribute (r = −0.457), is the difference between number
of sente and gote sequences. The strength of this attribute is probably caused by
the fact that the number of sente sequences itself is very strong.

The next two attributes are the patterns shown in Figure 5.4 (middle and
right). Both moves have a similar context — they are usually played on the
boundaries of competing forces. Such moves are usually of crucial importance.
For example, the horse move (keima) pattern (in the middle, r = −0.455) usually
prevents White from foiling Black’s future development by jumping into what
probably is a potential Black’s territory.

The pattern on the right (r = −0.446), shows a one-point jump which tries
to get ahead of White and thus prevent White’s possibility of shutting Black to
the side (without the marked black stone, White could play at a, which would
probably be unbearable for Black).

Positively correlated attributes (“weak players’ attributes”)

On the other hand, the most strongly positively correlated attributes (r > 0) are
the patterns that exhibit defects or inefficiencies in shape. The best example of
this is the empty triangle shape (Sensei’s Library, 2013d), as shown in Figure 5.5
(left). The fact that the two strongest (r = 0.437 and r = 0.402) bad shapes are
empty triangles backs the commonsense taught to beginners (“Do not play the
empty triangle”). (The second strongest empty triangle pattern has almost the
same configuration of stones as the first one, with the exception that the stone

b is not present.)
As expected, the beginners also tend to capture unnecessary stones — the

third strongest “weak” attribute (r = 0.377) was the number of captured stones
within first 60 moves. The most likely reason for this is that beginners are not able
to discern between important and unimportant stones and they tend to capture
because “they could” instead of because “it is the best move”.

5The joseki are standard sequences of moves which ensure even result for both players. The
joseki are mainly played in the opening and mainly regard corners and their approaches.
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a

r = −0.480, a standard
one-point jump,

preventing White from
capping.

r = −0.455,
a multi-purpose horse

move.

r = −0.446, Black is
getting ahead; otw.

White could play at a.

Figure 5.4: Top 3 negatively correlated patterns (“good moves”).

b

c d

r = 0.437, an empty
triangle. The second
pattern (r = 0.402)
does not have b

present.

r = 0.351, an overly
solid connection.

r = 0.325, pushing
from behind.

Figure 5.5: Typical positively correlated patterns (“bad moves”).

The next attribute is a solid connection (r = 0.351) depicted in the middle
of Figure 5.5. It looks like Black is trying to protect from the cut at . Were
the cut really severe (and this is not sure), it would probably be a better idea to
connect at c (so that Black has a better eye-space), but we cannot give further
interpretation without seeing the rest of the board.

We should also mention another strongly correlated pattern which came up
during the analysis and which is also very important. It is the pushing from
behind pattern (r = 0.325) shown in Figure 5.5 (right). Generally, pushing from
behind is bad because it allows the opponent to play at d, which is a very good
move — it limits Black’s future development, while extends White’s. Instead of

, Black could e.g. play the horse move (Figure 5.4, in the middle), or play
somewhere else.
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5.2 Style

Apart from the strength estimation, we also used the framework presented in this
work to test prediction of playing styles for professional players. The organization
of the text is similar to that of the strength. Firstly, we give details of the
dataset (Section 5.2.1). Next, we investigate performance of different feature
extractors (Section 5.2.2). Using the best features found, we explore possibilities
for prediction of the styles (Section 5.2.3). Finally, we analyze the single attributes
and their relation to different styles (Section 5.2.4).

5.2.1 Dataset

The collection of games in this dataset comes from the Games of Go on Disk
(GoGoD) database by Hall – Fairbairn (winter 2011a). This database contains
more than 70 000 games, spanning from the ancient times to the present.

We chose a small subset of well known players (mainly from the 20th century)
and asked some experts (professional and strong amateur players) to evaluate
these players using a questionnaire. 6 The experts (Alexander Dinerchtein 3-pro,
Motoki Noguchi 7-dan, Vladimı́r Daněk 5-dan and V́ıt Brunner 4-dan) were asked
to value the players on four scales, each ranging from 1 to 10.

Style 1 10
Territoriality Moyo Territory
Orthodoxity Classic Novel
Aggressivity Calm Fighting
Thickness Safe Shinogi

The scales try to reflect some of the traditionally perceived playing styles.7 For
example, the first scale (territoriality) stresses whether a player prefers safe, yet
inherently smaller territory (number 10 on the scale), or roughly sketched large
territory (moyo, 1 on the scale), which is however insecure (we describe the scales
in more details below). Table 5.5 shows the data obtained from the questionnaire.
The mean standard error of the answers is 1.164, which we regard as reasonably
consistent. Table 5.4 shows mean values of answers (across all the players) for
the styles along with standard deviation. On the right, the pairwise correlation
of the styles from the questionnaire is given (measured by the Pearson’s r).

— Pearson’s r
Style Mean value Ter. Orth. Aggr. Thick.

Territoriality 5.670± 2.390 1.000 -0.526 -0.602 0.566
Orthodoxity 5.861± 2.415 1.000 0.738 -0.072
Aggressivity 6.722± 2.176 1.000 0.124
Thickness 4.903± 1.667 1.000

Table 5.4: The mean values of styles (across all the answers) and the pairwise
correlation between them.

6Part of the data was reused from our previous work (Baudǐs – Moudř́ık, 2012).
7Refer to Fairbairn (winter 2011), or Sensei’s Library (2013j) to grasp the concept deeper.
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Player Territoriality Orthodoxity Aggressivity Thickness

Chen Yaoye 6.0± 1.0 4.0± 1.0 6.0± 1.0 5.5± 0.5

Cho Chikun 9.0± 0.7 6.2± 2.6 6.8± 1.1 9.0± 0.7

Cho U 7.2± 2.0 5.2± 1.5 6.0± 1.9 6.2± 1.5

Fujisawa Hideyuki 3.5± 0.5 9.0± 1.0 7.0± 0.0 4.0± 0.0

Go Seigen 6.0± 2.0 9.0± 1.0 8.0± 1.0 5.0± 1.0

Gu Li 6.2± 1.3 7.8± 1.5 9.2± 0.8 5.0± 1.9

Hane Naoki 7.5± 0.5 2.5± 0.5 4.0± 0.0 4.5± 1.5

Ishida Yoshio 8.5± 1.5 4.0± 2.1 3.0± 1.2 4.8± 1.1

Kato Masao 3.0± 0.8 3.7± 1.7 8.7± 1.2 5.7± 2.4

Kobayashi Koichi 9.3± 0.9 2.0± 0.8 2.7± 0.5 4.3± 1.7

Luo Xihe 7.3± 0.9 7.3± 2.5 7.7± 0.9 6.0± 1.4

Ma Xiaochun 8.2± 1.9 5.2± 1.9 5.2± 1.8 6.8± 2.3

Miyazawa Goro 1.5± 0.5 10.0± 0.0 9.5± 0.5 4.0± 1.0

O Meien 2.7± 1.2 9.7± 0.5 8.3± 1.7 3.7± 1.2

Otake Hideo 4.5± 0.5 2.5± 0.9 4.2± 1.3 3.2± 1.1

Rui Naiwei 5.5± 1.8 5.5± 0.5 9.0± 0.7 4.0± 1.6

Sakata Eio 8.0± 1.6 4.0± 1.2 7.8± 1.1 8.2± 1.5

Takao Shinji 5.0± 1.0 3.5± 0.5 5.5± 1.5 4.5± 0.5

Takemiya Masaki 1.5± 0.5 5.8± 2.0 7.2± 0.8 1.8± 0.8

Yamashita Keigo 2.0± 0.0 9.0± 1.0 9.5± 0.5 3.0± 1.0

Yi Ch’ang-ho 7.5± 1.8 5.2± 1.9 3.8± 1.8 3.5± 0.5

Yi Se-tol 6.0± 1.2 7.2± 2.3 9.2± 0.4 7.2± 1.5

Yoda Norimoto 7.0± 1.9 3.8± 2.0 4.0± 1.9 3.2± 1.1

Yuki Satoshi 3.0± 1.0 8.5± 0.5 9.0± 1.0 4.5± 0.5

Table 5.5: Expert-based evaluation of styles of selected Professionals, including
standard deviation of their answers. Only the players that were evaluated by two
or more experts out of four are included.

For each of the professional players, we took 192 of his games from the GoGoD
database at random.8 We divided these games (at random) into 12 colored sets
GC of 16 games. For each player, we have one target variable y for each style —
basically, we view the problem as 4 different regression problems which share the
feature extraction.

8We chose this number because the database does not contain more games for some of the
players.

40



Feature Extractor RMSE Parameters
None 2.403 (obtained by mean regression learner)

Pattern feature 1.558 N = 600, linear normalization,

A randomly sampled as 20% of all the games.

Local sequences 2.267 ω = 5

Border distance 1.663 ByDist = {〈1, 2〉, 〈3〉, 〈4〉, 〈5,∞)},

ByMoves = {〈1, 16〉, 〈17, 64〉, 〈65, 160〉, 〈161,∞)}

Captured stones 2.381 ByMoves = {〈1, 40〉, 〈41, 160〉, 〈161,∞)}

Win/Loss statistics 2.362 —
Win/Loss points 2.415 — (see Footnote 9 on page 41)

Table 5.6: Comparison of the best feature extractors of each kind. The complete
list of features evaluated is given in Appendix C.1. The learner used for evaluation
is given in Appendix C.3. The results were computed using 5-fold validation by
averaging RMSE of all the styles. The last row shows performance of the mean
regression learner and serves for comparison.

5.2.2 Feature Evaluation

We evaluated different features from Appendix C.1 similarly as we did with the
strength data — we have used the same initial hand tuned learner (Appendix C.3)
as the evaluation learner lev.

9 Because the style regression essentially consists of
four different regression problems (one for each style) we could perform the anal-
ysis independently. Doing so would have several drawbacks — most importantly
the features would not be easily comparable and the whole process of feature
extraction would be slowed down four times.

We therefore decided to evaluate the features regarding all the styles. For
a given feature, we used the lev learner to learn four style regression problems,
the final RMSE was computed as an average of the RMSE errors from the
subproblems. The RMSE errors for subproblems were analyzed using 5-fold
cross-validation with the same random seed (which means that the splits were
the same for all the styles). The results are given in Table 5.6.

5.2.3 Regression

Using the concatenation of the best feature extractors from previous section, we
processed the data. Then, we used the genetic algorithm to determine the best
ensemble learner.

During the process, we have encountered over-fitting problems concerning the
size of the dataset.

At first, we chose the parameters of the GA to be the same as in the problem
of strength (Table 5.2), with the exception of the fitness function. The RMSE
error was computed in the same manner as in the style feature extraction (one
learner for all the styles, the fitness of a learner is average RMSE on the different
styles). Similarly to the case of strength, it turned out that it was not possible

9 Again with the exception of the Win/Loss points statistic, where we changed the number
of components of PLS regression to 2 (from 3 in lev). This was needed because this feature has
small dimension (2) which causes instability of the PLS with 3 latent variables.
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to use cross-validation on the full dataset because of time constraints. We tried
to workaround this by subsampling the data prior to the experiment, but due to
relatively small size of the dataset, this resulted in over-fitting of the resulting
ensemble model.

Secondly, we tried not to use the cross-validation, but to use proportional
division scheme instead — the fitness is evaluated by randomly taking 70% of
the dataset for training and the rest for testing; in each of the iterations, this
is done anew to mitigate any effects caused by biased random split (dividing
the dataset once prior to the run would cause over-fitting). Unfortunately, this
too did not yield satisfactory results. Even though over-fitting was not the case,
the genetic algorithm was not able to consistently improve the ensembles — the
subsampled datasets in each of the iterations were too different to ensure that
the best individiuals from one iteration would have good chances in the next one.
This rendered the genetic algorithm unsucessful.

Consequently we concluded, that the robust cross-validation with the full
dataset is necessary and that we thus need to compensate for the increased re-
source consumption differently. We did this by limiting the population size to 10
individuals and most importantly, by limiting the ensemble to contain at most 5
base learners. Technically, this is done by randomly removing excess number of
base learners from each individual at the end of each iteration. Additionally, we
decided to run the GA independently for each of the styles, instead of optimizing
one ensemble learner for all the styles (as above). The parameters of the final
genetic algorithm are listed in Table 5.7.

The performances of the best learners found are given in Table 5.8 and the
learners are listed in Appendix C.5. Development of the RMSE error in time is
given in Figure 5.6. Each run of the genetic algorithm (for different styles) took
approximately one hour of CPU time per iteration, the machine specification is
given in Appendix C.6.

Parameter Value
Set of base learners BL Is given in Appendix C.2.

Population size S 10
Elite size E 1

Number of iterations Max 100
Mutation probability PmI 0.2
Mutation probability Pmv 0.5

Ensemble size limit 5
Fitness function 1/RMSE of the resulting stacked learner. The

RMSE is computed using 5-fold cross-validation.

Table 5.7: The parameters of the genetic algorithm for the style dataset.

5.2.4 Attribute Evaluation

Following the same procedure we used in strength attribute evaluation, we scru-
tinized the dependences between the styles and different attributes. The results
have some significant properties. Generally, the opening moves (which in sense
form the shape of the following game) have high importance, as do some other
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RMSE
Learner Territoriality Orthodoxity Aggressivity Thickness

Mean regression 2.403 2.421 2.179 1.682
Initial hand tuned l. 1.434 1.636 1.423 1.484
The best GA learner 1.394 1.506 1.398 1.432

Table 5.8: Regression performance of different learners on the full dataset. The
feature set used is shown in Table 5.6. The results were computed using 5-fold
cross-validation.
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Figure 5.6: Evolution of RMSE error during the run of the genetic algorithm for
finding an optimal stacking ensemble for the style data.

typical formations. Moreover, because the styles themselves are correlated with
each other (relatively strongly – Table 5.4), the results for different styles are
often related, as illustrated in the following text.

Territoriality

The scale of territoriality spans from the style which emphasizes moyo-based,
influence style of game (number 1 on the scale) and a style which stresses safe
territory on the other side (number 10 on the scale). Regarding correlations of
the attributes, this corresponds to positive Pearson’s r > 0 for the territorial style
and r < 0 for players preferring moyos.

The attributes seem to capture this scale exceedingly well, the correlations are
strong and have clear interpretations. In the opening (first 16 moves), increasing
territoriality is revealed by preference of third line moves (r = 0.621, the border
distance feature), while the moyo style is most strongly correlated (r = −0.555)
by playing to 5th line or higher. In line with the common knowledge, playing on
the fourth line in the opening (again, the border distance feature) also correlates
with moyo-based style of the game (r = −0.530).

The pattern attributes seem to reveal the same information. The strongest
territory focused pattern is the horse move extension (most probably a corner
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r = 0.537, a horse
move enclosure.

r = 0.473, a two space
3rd line extension.

r = −0.317, preventing
White from
connecting.

Figure 5.7: Territoriality. r > 0 for patterns correlated with increasing territori-
ality, r < 0 for patters which correlate with the moyo style of game.

enclosure) of r = 0.537 and a slightly weaker two space third line extension of
r = 0.473. The strongest pattern with negative r = −0.317 is a move which
prevents White from connecting underneath — allowing the enemy to connect
is often bad, because connected group are stronger and the influence-preferring
player wants to use his influence to fight. All these pattern attributes are shown
in Figure 5.7.

Figure 5.8: r = 0.292, secur-
ing the side.

Another interesting result is the fact, that the
territoriality is also correlated with the difference
between average number of sente and gote moves
(r = 0.347) and the average number of sente moves
(r = 0.336). Since the ω = 5, which considers
rather tightly local responses, we believe that this
corresponds to moves which close the side in sente
(e.g. from sliding under the stones, as also backed
by a pattern attribute in Figure 5.8).

Orthodoxity

The orthodoxity scale spans from 1 (players with a classic style, Pearson’s r < 0)
and 10, which corresponds to a novel style of play (r > 0).

The strongest attributes that correlate with classic style of game are related to
that of territorial style from above. For example, the strongest “classic” attribute
is the number of stones on third line played in the opening with r = −0.479; the
second strongest is the horse move enclosure r = −0.456. The orthodox player
also likes the formation shown in the middle of Figure 5.9, r = −0.374.

Figure 5.10: r =
0.249, a crosscut.

On the other hand, the novel player tends to play open-
ings stressing influence by playing on the fourth line r =
0.429 or higher r = 0.317 (opening moves that are played
higher than on the fourth line are quite uncommon, not stud-
ied as thoroughly and thus probably giving possibilities for
innovative moves). Apart from the opening moves, attributes
for novel players (r > 0) are generally weaker than those for
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2

1

r = −0.456, a horse
move enclosure.

r = −0.374, pulling
back after an

attachment of Black 1.

r = −0.367, a two space
extension.

Figure 5.9: Orthodoxity. r > 0 for novel players, r < 0 denotes a classical style
of game.

the classic player. This is not surprising, because novel players tend to come
up with new and unique moves; thus trying to find a typical novel move might
prove to be elusive. For example, the strongest pattern attribute with positive r,
the crosscut shown in Figure 5.10, is not really a novel move. However, it often
results in a complicated position, which could give opportunities for surprising
innovative moves.

Aggressivity

1

r = −0.306, an
endgame move.

r = −0.265, a corner
invasion.

r = 0.262, a hane at
the head of enemy

stones.

Figure 5.11: Aggressivity. r > 0 for players who like to fight, r < 0 marks a calm
player.

The aggressivity scale spans from the calm playing style (number 1, attributes
correlating with decreasing aggressivity have r < 0), to very aggressive game style
(number 10 on the scale, r > 0), where the player loves to fight.

Again, (with a few interesting exceptions) the calm player tends to play on
the third line in the opening (r = −0.428), likes secure territory in the corner
(second strongest attribute r = −0.426 is the same horse move enclosure from
previous styles), and safe two space extension r = −0.403 (we omit these two
patterns, since the reader is already familiar with them from above).
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Moreover, he likes to play a 3-3 corner invasion r = −0.265 Figure 5.11
(middle). Most probably, this is a part of the sequence showed in Figure 5.12.

1 approaches the white 4-4 stone, 2 is a very aggressive response, a so-called
pincer (Sensei’s Library, 2013b). 3 is a calm response, giving up the 1 for now
and taking the corner instead.

1

2

3

Figure 5.12: A standard
joseki.

Finally, the calm player tends to win by points
r = −0.349 more than the aggressive player. Inter-
estingly, the third strongest pattern correlated with
calmness was the endgame move (r = −0.306) on the
left of Figure 5.11. This might mean that a strong
calm player is aiming to win the game during the
endgame, which usually requires mechanically precise
reading and counting.

The fighting player likes to play on the fourth line
in the opening (r = 0.418). The second strongest at-
tribute (r = 0.334) of the fighting player is the number
of moves played above the fourth line in the early mid-
dle game (moves 17 to 64) — these moves might be
reductions of the opponents territory or preparations
of the battlefield for future running fights. In line with our expectation, the
fighting player also tends to win by resigns (r = 0.234).

Thickness

r = 0.342, a spacious
move on a third line.

r = 0.288, a clamp,
often a key move of a

tesuji.

r = 0.258, yet another
horse move enclosure.

Figure 5.13: Thickness. r > 0 for players who are skilled at shinogi, r < 0 for
player whose formations are safe.

Finally, there is the thickness scale. It spans from safe style of game (1,
r < 0) to shinogi style (10, r > 0). As discussed in Chapter 1.3.3, thick positions
have little or no weaknesses. Shinogi is a term used when a player skillfully
overcomes a crisis. The scale definition is not that clear-cut in comparison with
the preceding scales, and also the variance of answers of the questionnaire is lower
than the other scales.

The dependencies for the thickness scale are generally weaker than we have
seen with the previous styles. Regarding the shinogi end of the scale, the strongest
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attribute is the number of opening moves played on the third line (r = 0.352),
followed by a third line pattern (r = 0.342) which could be a wide extension, or
a move intended to disrupt enemy side formation in the opening (Figure 5.13, left).
Interestingly, the third strongest attribute with positive correlation (r = 0.288)
is a pattern attribute showing a contact move called clamp, which is often a part
of tesuji (a cunning sequence which achieves something — e.g. saving a group,
capturing enemy’s key stones, etc.). The next strong pattern correlated with
mastering the shinogi is the number of moves played on the first or second line
within the early middle game r = 0.272. This could very well correspond to
moves that are securing life in an enemy’s sphere of influence, or placing stones
that will be sacrificed to yield an advantage — playing this low this early neither
builds a nice territory (third line is supreme in this), nor builds influence directly.

The thick part of this scale does not yield dependencies with clear interpreta-
tion. The two strongest attributes with r < 0 are the number of moves played on
four line in the opening (r = −0.312), or above (r = −0.261). In line with this,
the third is the number of stones played above the fourth line in the early middle
game r = −0.224. These moves are not really moves characteristic for what we
consider thick.

Figure 5.14: r = −0.216,
A very thick move, called
the iron pillar.

We believe that the main reason for this is the
Takemiya Masaki, who is a strong outlier on this
scale. Master Takemiya is known for building ex-
treme moyos and prefer influence very strongly over
safe territory. His games have often depended on
whether the opponent lives inside the sketched moyo
or not — so the score of 1.8 he received on the scale
of thickness maybe does not reflect the fact that he is
very thick and plays safely (which he does not), but
the fact that his groups do not often need to shinogi,
because it is the opponents who do. This probably
implies, that the scale of thickness was not chosen
very well. We treat this matter further in the discussion (Chapter 6).

Only the fourth strongest negative attribute (r = −0.216) has clear interpre-
tation as a thick move, it is the iron pillar block shown in Figure 5.14.
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6. Discussion and Future Work

In this work, we dealt with many issues regarding the possibilities of inference
of different variables (strength, styles) from collections of records of the game of
Go. We found out that the inference of these variables is indeed possible, under
few assumptions.

Most importantly, we need a set of robust features, that are general enough
to capture information present in games, which is relevant to the target vari-
able. Based on our knowledge of the game, we invented a number of features
(Chapter 3) and tested their performance under different settings (Sections 5.1.2
and 5.2.2). In line with our expectations, different target variables are best cap-
tured by different features and attributes. A clear example of this was seen in
the case of style: the histogram feature of distance from the board edge (in the
opening) proved to capture the territoriality very well (Section 5.2.2). Generally,
the pattern feature turned out to be the strongest for both the strength and the
styles regression problems — this is because the pattern feature basically consists
of statistics of many independent1 patterns and the machine learning methods
can “pick” the ones that are relevant. Analysis of the individual attributes (Sec-
tions 5.1.4 and 5.2.4) reveals, that all the features have useful attributes for some
of the target variables — for example, the number of sente sequences correlates
with strength, as did the number of captured stones in the early game. To men-
tion one more example, the percentage of games won by resignation correlates
with the aggressivity of a player.

Concerning the correlations, we need to say that except for the strongest
correlation of a single attribute we have found, which had Pearson’s r of 0.6212,
the dependencies were not very strong. The few best attributes for each variable
have what would be better called a moderate dependency, on average spanning
from r = 0.25 to r = 0.5. We conclude, that the feature space (defined by different
features we have used) comprises many relatively weakly correlated attributes and
only a few attributes that are correlated moderately. Overall, we should also note
that we consider the fact that almost all of the most strongly correlated attributes
were in line with common Go knowledge to be a sign of good “expressive” power
of the features.

Secondly, to obtain the best performance, robust machine learning methods
(Chapter 4) are needed. These need to be powerful enough to make use of the
weak dependencies in the data. We have tested different algorithms — out of
these, the method of stacked generalization turned out to have supreme perfor-
mance. At first, we tried to hand-tune the ensemble (Appendix C.3), to find out
that this is too cumbersome and time-consuming if best performance is sought.
To solve the problem of finding the best combination of learners into the stacked
ensemble, we designed a genetic algorithm, which showed an improvement3 of 3%
(for the strength data, Section 5.1.3) and of 6% (average improvement for the
style data, Section 5.2.3) over the initial hand tuned ensemble, which we consider

1Strictly speaking, the attributes are truly independent only when independent normaliza-

tion (Section 3.2) is used.
2The correlation marks dependency between the territoriality scale, and the number of

moves played on the third line during the opening phase, Section 5.2.4.
3The baseline being the mean regression learner.
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a good result. This might not seem like a lot, but remember that we compare
the best GA learner with the best hand-tuned learner we found4. The ensembles
evolved by the genetic algorithm are fairly complex (e.g. Figure 5.2) and would
not be probably found by hand at all. It should be noticed, that the method of
the genetic algorithm does however take considerable amounts of time. In cases
where this would not be feasible, some worse (in terms of performance) yet faster
method could be used. For instance, bagged neural network on itself performed
pretty well (Table 5.3).

Finally, the scales need to be defined clearly and we need reliably tagged data.
For example, the ranking system in the game of Go is very clearly defined by
means of handicap stones (Section 1.2). Similarly, the scale of e.g. territoriality
seems to be defined very well — judging by the results of the style regression
(Section 5.2.3) and the fact that the strongest attributes seem to be in accordance
with the traditional knowledge. On the other hand, the analysis of the strongest
attributes correlated with the thick-playing end of thickness scale (Section 5.2.1)
did not give patterns that really correlate with the traditional concept. The fact
that the thickness scale is somewhat different from the other styles can also be
guessed from the standard deviation σ = 1.6 of the answers on the thickness scale
part of the questionnaire, which is much lower than that of the other styles (other
styles have σ ranging from 2.176 to 2.415, see Table 5.4). Were the answers on
the scale 1 to 10 distributed uniformly, the σ would be approximately 2.6.5 This
basically means that the scale of thickness is not “used well”. This is also backed
up by the comment of one of the interviewees, Vladimı́r Daněk, who noted that
the concept of thickness is sometimes not in opposition to shinogi, but rather in
coordination with it — when one plays thickly on one side of goban, he often
plays shinogi on the rest. The interviewees might thus simply have understood
this scale as how skilled the particular proffessional is in playing shinogi.

Regarding the styles, one more point should be made. We have seen, that the
strongest attributes were often very similar. For example, the knight-move corner
enclosure appears for the territory stressing player, the player with classic style
and the player who plays safely. This is in line with the correlations of the scales
themselves (Table 5.4). It might be however interesting to look for concepts that
are orthogonal.

Future work and applications

Indeed, the methodology presented in this work could be extended. Regarding
the prediction abilities, we believe that apart from increasing the dataset sizes6

generally the only feasible way of further improvement is to add new features that
capture different aspects of the gameplay (or refine the ones presented here). We
made this conclusion after trying many different learners and other machine learn-
ing techniques. To name a few, we elaborated with the Support Vector Regression
(Smola – Schölkopf, 2004), yet we were unable to get performances comparable

4Of course, the hand-tuned learner was tuned to the domain of strength, so the expected
improvement is naturally bigger for the case of styles.

5From definition of standard deviation of random variable X from U(a, b), σ2 = EX2 −
(EX)2 = . . . = (b− a)2/12.

6Which has clear computational limits.
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to any other methods and the SVM took considerable time to learn.7 We also
tried to preprocess the data by the Principal Component Analysis (Jolliffe, 1986),
a commonly used method to reduce dimension8, but it did not yield any improve-
ment whatsoever. Observing the performance of learners with the current set
of features suggests that there is a clear upper bound on precision that can be
achieved (see Table 5.3). We therefore believe that improving the features is the
way to improve the performance further.

For example, we have devised a histogram feature which counts numbers of
captured stones (Section 3.4.2). A straightforward idea would be to extend the
counts to include the dead stones9 as well. Deciding which stones are dead and
which are alive is however in itself not an easy problem. Luckily, the status of
a stone (or a group of them) can be estimated using methods of the Monte-Carlo
tree search.10 By looking at the owner of a stone at the end of each random
simulation, the probable owner can be estimated. Moreover, this is a standard
part of the MCTS bots, such as the Pachi (Baudǐs et al., 2012) we already use to
extract the patterns. We plan to extend the Pachi to output this information in
the future, the new feature could simply extend the captured stones histogram
from this work.

Adding new features and improving the prediction power is not important
just for the sake of it, but also because of possible applications. For instance, we
see some interesting potential in the attribute evaluations of the pattern feature.

Firstly, there is the educational potential — the attribute analysis of strength
gives us a list of patterns (or other attributes), that are mainly played by weak
players (Section 5.1.4). By simply pointing out the fact that a certain move is bad
and why is it so, we can give any particular weak player a direct advice regarding
his play. To test the idea, we have implemented this in the web application
(Appendix A) for the top few bad patterns. Of course, this can be “reliably” done
only for the most strongly correlated patterns, since the weaker dependencies are
burdened by larger error.

Secondly, regarding the pattern attributes (and strength), the attribute eval-
uation could help to improve computer Go programs. For a given set of pat-
terns11, the method essentially gives weights of each pattern. This weighting
might improve the random Monte-Carlo simulations, similarly as in (Coulom,
2007). Moreover, this could even be used to balance the level of the bot — mak-
ing the bot do human-like bad moves could give more natural feel of the game
for a weak human player. As far as we are aware, this is a novel idea.

The strength estimation could also be used to help to determine initial ranking
of a player, both on the internet (where it often takes some time before the

7Apart from simple manual tuning, we also used (to no avail) the automatic parameter
searching techniques present in the Orange datamining framework (see Appendix B, Imple-
mentation).

8We tried to reduce the dimension by taking the coefficients of projection to base of first
N components, for different values of N .

9Remember from Chapter 1.1 that dead stones do not have two eyes and cannot be con-
nected with stones that are alive.

10We mentioned the Monte-Carlo tree search in Chapter 1 on page 4, for instance, see
Browne et al. (2012).

11We use the top N patterns from the data set (Chapter 3.2), but we could for example use
all the spatial configurations up to a certain (reasonably small, e.g. 3 or 4) gridcular distance.
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ranking algorithm converges to the real value) and in the real matches. In the
near future, we plan to study how small could the number of games really be to
still give a reliable estimate of the strength. From some initial experiments we
have performed with the strength dataset from Section 5.1.1, it seems that the
precision does not depend on the number of games, as far as the sample is larger
than 10 games.

Similarly, precise prediction of style can serve as a tool for Go players — we
can recommend professional games to review or point out some things to focus on
to balance player’s skillset. We also realized this as a part of the web application
(Appendix A). Based on the user’s predicted style, we compute the Euclidean
distance to the professionals from the style questionnaire (Section 5.2.1) and
present the user those who are relevant12. We are aware of only two tools, that
do something alike, both of them are however based on a predefined questionnaire.
The first one is the tool of Mr. Dinerchtein (2012) — the user answers 15 questions
and based on the answers he gets one of predefined recommendations. The second
tool is not available at the time of writing, but the discussion at (Sensei’s Library,
2013l) suggests, that it computed distances to some pros based on user’s answers
to 20 questions regarding the style. We believe, that our approach should be more
precise, because the evaluation takes into account many aspects of the games. On
the other hand, since the style estimation in our work is trained on professional
players’ data, inadequate skill of the user is surely a source of errors13; it is
however a question for a further discussion whether the concept of style as we
defined it is even relevant for a beginner. Since the web application allows us to
receive feedback on the style predicted, we plan to investigate this further in the
future.

12We show the 4 professional players that are closest to the user and 4 that are farthest
apart, based on the euclidean distance, see the web application for details.

13Which we unfortunately cannot even enumerate, since we have no style data for weaker
players yet.
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Conclusion

In this work, we extended the methodology for extracting evaluations of players
from a sample of Go game records originally presented in (Baudǐs – Moudř́ık,
2012). Firstly, we added more features and laid out a methodology for their
comparison. Secondly, we developed a robust machine-learning framework, which
is able to capture the dependencies between the evaluations and general target
variable using ensemble meta-learning with a genetic algorithm.

We applied this framework to two domains, estimation of strength and styles.
The results show that the inference of the target variables in both cases is viable
and reasonably precise, except for the style scale of thickness which was not,
however, defined well. Finally, we have presented a web application, which realizes
the methodology, while presenting a prototype teaching aid for the Go players
and gathering more data.

Overall, we hope that the findings of this work will be useful in deepening
both human and computer understanding of the game of Go.
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A. Web Application

The web application is published as a part of the GoStyle project, which we
founded to study the possibilities of the computer analysis of Go game records
by methods presented in this work. (Moudř́ık – Baudǐs, 2013) The web of the
project has two main parts:

1. An interactive questionnaire.1

2. The web application itself.2

Interactive questionnaire

The sole purpose of the interactive questionnaire1 is to get preciser data about
the styles of professionals. It serves to substitute our old method of gathering
information from strong players by e-mail and copying and formating the infor-
mation by hand. The information obtained is the same as in the questionnaire
from Section 5.2.1. For a number of strong professional players (and also a few
strong amateurs that are active on the Kiseido Go Server (Shubert, 2013a)), we
ask the interviewee to evaluate style of these players. See Section 5.2.1 for details
about the styles.

Web application

The web application2 allows anyone to upload a sample of games (or specify
a Kiseido Go Server nickname). Based on the sample, we do several things:

• We estimate the strength of the player (as in Section 5.1),

• we estimate the style of the player (Section 5.2),

• based on the estimated style, we reccomend a list of 4 professionals (from
Section 5.2.1) whose styles are closest (by computing Euclidean distance
between the styles) and 4 professionals whose styles are farthest.

• Also, we compare the feature vector computed by the strength regression
with a linear model fitted for the top “weak players’ attributes” and in
case that the value of the attribute in the sample is corresponding to play-
er who is weaker than 8-kyu, we warn the user.3 This serves as a very
simple teaching aid. Currently, this approach is limited by the fact, that
the dependencies of single attributes are very weak and have large error, as
discussed in Chapter 6.

1 http://gostyle.j2m.cz/questionare.html
2 http://gostyle.j2m.cz/webapp.html
3We warn the user about the empty triangles, stones captured in the opening, pushing from

behind, number of sente and gote sequences.
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• Finally, we let the user correct the strength and style (if he thinks the
web application is mistaken). This feedback will allow us to improve the
methods in the future.

The source code for both the server and client part is available online, as
detailed in the implementation (Appendix B). Some screenshots of the web ap-
plication follow.

Figure A.1: A portion of the Web Application, showing how can the user upload
data.

Figure A.2: A portion of the Web Application, showing results of the strength
estimation for a weak player (whose real strength in this case is 13-kyu).

62



Figure A.3: A portion of the Web Application, showing results of style estimation
and similar professionals for a weak player.
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Figure A.4: A portion of the Web Application, showing some recommendations
for a weak player.
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B. Implementation

The code used in this thesis1 is available on the attached CD, or released online as
a part of GoStyle project (Moudř́ık – Baudǐs, 2013). The majority of the source
code is implemented in the Python programming language.2

The majority of the machine learning methods used were taken from the
Orange Datamining suite (Curk et al., 2005), with the exception of the Fast Ar-
tificial Neural Network library FANN (Nissen, 2003) and our wrapper for this
library (Moudř́ık, 2013).

We used the Pachi Go engine (Baudǐs et al., 2012) for the raw pattern feature
extraction.

Web Application

The server part of the web application is written in the Python programming
language (Python Software Foundation, 2008), with aid of the Celery framework
for asynchronous task processing (Celery Project, 2013).

The client part is a standard combination of HTML and Javascript and it
uses the AngularJS framework (Google and community, 2013).

1http://repo.or.cz/w/gostyle.git
2(Python Software Foundation, 2008)
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C. Parameters

C.1 Feature Extractors

Feature extractor Settings
Pattern feature Normalization ∈ {independent, proportional, linear},

N ∈ {200, 400, 600, 800, 1000} all combinations, A ran-
domly sampled as 20% of all the games in the domain.

Local sequences ω ∈ {5, . . . , 15}
Border distance ByDist = {〈1, 2〉, 〈3〉, 〈4〉, 〈5,∞)}, ByMoves =

{〈1, A〉, (A,B〉, (B,C〉, (C,∞)}, A ∈ {10, 16}, B ∈
{44, 54, 64}, C ∈ {160, 200, 240}, all combinations.1,2

Captured stones ByMoves = {〈1, A〉, (A,B〉, (B,∞)}, A ∈
{40, 60, 80}, B ∈ {160, 200, 240}, all combinations.1

Win/Loss statistics —
Win/Loss points —

1 The bounds for the parameters were partially limited by hand tuning prior to
experiments.

2 The motivation behind the relatively large number of boxes is to capture both
the very early opening and late opening/very early middle game, which we
expected to have a big importance. The last two intervals should correspond
to late middle game and endgame.
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C.2 Base Learners and their Settings

Base learner Settings
Mean regression —
PLS regression l ∈ {2, . . . , 10}

k-nearest neighbors k ∈ {10, 20, . . . , 60}, α ∈ {10, 20},
δ ∈ {Manhattan,Euclidean}, all combinations.

Random Forests N ∈ {5, 10, 25, 50, 100, 200}
Neural network Desired ǫ ∈ {0.001, 0.005}, max ∈

{50, 100, 200, 500} iterations, 1 hidden layer
with number of neurons ∈ {10, 20}, all combina-
tions. We used the symmetric sigmoid activation
function.1 2

Bagged Neural networks For ensemble sizes of ∈ {20, 40, 60}, each Neural
network (from right above) was tested.

1 We have used a neural network with one hidden layer. The number of neurons
in the input and output layers depends on the dimensions of data. Moreover,
the range of activation function is (−1, 1), while the range of domains of
dependent variables in the work is larger (e.g. 〈−5, 20〉 for strength data).
Therefore, we had to scale the data. Given a training set Tr = {(xi, yi), ...},
we mapped the min(yi) to -1 and max(yi) to 1 and the values in between
linearly. (Of course, the process is reversed when we predict the value, to
give y’s from the original range). The training data thus should not have
smaller domain than the testing data, or the error is increased. With proper
training/testing data sampling, we did not find this to be a problem.

2 The bounds for the parameters were partially limited by hand tuning prior to
experiments, because training the neural network is computationally costly.

C.3 Initial Hand-tuned Learner

This learner was found by hand-tuning for the strength data and we use it as
a reference learner throughout the work.

Ensemble learner Settings
Stacking 4 folds, level 2 learner: Neural network with desired

ǫ = 0.005, max = 100 iterations, 1 hidden layer with
10 neurons.

Base learners Settings
Mean regression —
PLS regression l = 3

k-nearest neighbors k = 50, α = 20, δ = Manhattan.
Random Forests N = 50

Bagged Neural network 20 × Bagged Neural network: desired ǫ = 0.001,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.
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C.4 Strength: Best GA Stacking Ensemble

Ensemble learner Settings
Stacking 6 folds, level 2 learner: Bagged (20×) Neural network

with desired ǫ = 0.005, max = 500 iterations, 1
hidden layer with 10 neurons.

Base learners Settings
Mean regression —
PLS regression l = 3
Random Forests N = 50
Neural network Desired ǫ = 0.001, max = 200 iterations, 1 hidden

layer with 20 neurons.
k-nearest neighbors k = 20, α = 20, δ = Euclidean.
k-nearest neighbors k = 40, α = 10, δ = Manhattan.
k-nearest neighbors k = 40, α = 10, δ = Euclidean.
k-nearest neighbors k = 40, α = 20, δ = Euclidean.
k-nearest neighbors k = 50, α = 10, δ = Manhattan.
k-nearest neighbors k = 50, α = 20, δ = Manhattan.
k-nearest neighbors k = 50, α = 20, δ = Euclidean.
k-nearest neighbors k = 60, α = 10, δ = Euclidean.
k-nearest neighbors k = 60, α = 20, δ = Euclidean.

Bagged Neural network 20 × Bagged Neural network: desired ǫ = 0.001,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.

Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.005,
max = 100 iterations, 1 hidden layer with 10 neu-
rons.

Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.001,
max = 500 iterations, 1 hidden layer with 20 neu-
rons.

Bagged Neural network 20 × Bagged Neural network: desired ǫ = 0.005,
max = 200 iterations, 1 hidden layer with 20 neu-
rons.

Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.005,
max = 500 iterations, 1 hidden layer with 20 neu-
rons.
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C.5 Style: Best GA Stacking Ensemble

C.5.1 Territoriality

Ensemble learner Settings
Stacking 5 folds, level 2 learner: Bagged (40×) Neural network

with desired ǫ = 0.001, max = 200 iterations, 1
hidden layer with 20 neurons.

Base learners Settings
PLS regression l = 3

k-nearest neighbors k = 20, α = 10, δ = Euclidean.
Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.001,

max = 100 iterations, 1 hidden layer with 10 neu-
rons.

Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.001,
max = 200 iterations, 1 hidden layer with 10 neu-
rons.

Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.005,
max = 50 iterations, 1 hidden layer with 10 neurons.

C.5.2 Orthodoxity

Ensemble learner Settings
Stacking 6 folds, level 2 learner: Neural network with desired

ǫ = 0.001, max = 200 iterations, 1 hidden layer with
20 neurons.

Base learners Settings
PLS regression l = 3

k-nearest neighbors k = 40, α = 10, δ = Manhattan.
k-nearest neighbors k = 40, α = 20, δ = Manhattan.
Neural network Desired ǫ = 0.001, max = 50 iterations, 1 hidden

layer with 20 neurons.
Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.005,

max = 200 iterations, 1 hidden layer with 20 neu-
rons.
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C.5.3 Aggressivity

Ensemble learner Settings
Stacking 6 folds, level 2 learner: Bagged (20×) Neural network

with desired ǫ = 0.005, max = 500 iterations, 1
hidden layer with 10 neurons.

Base learners Settings
PLS regression l = 3

k-nearest neighbors k = 10, α = 10, δ = Euclidean.
Neural network Desired ǫ = 0.001, max = 500 iterations, 1 hidden

layer with 10 neurons.
Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.005,

max = 100 iterations, 1 hidden layer with 20 neu-
rons.

C.5.4 Thickness

Ensemble learner Settings
Stacking 2 folds, level 2 learner: Neural network with desired

ǫ = 0.005, max = 500 iterations, 1 hidden layer with
20 neurons.

Base learners Settings
Mean regression —
PLS regression l = 2
Neural network Desired ǫ = 0.005, max = 200 iterations, 1 hidden

layer with 10 neurons.
Neural network Desired ǫ = 0.001, max = 500 iterations, 1 hidden

layer with 20 neurons.
Bagged Neural network 40 × Bagged Neural network: desired ǫ = 0.005,

max = 500 iterations, 1 hidden layer with 10 neu-
rons.

C.6 Testing Machine Specification

The software was run on the GNU/Linux operating system with kernel of version
3.4.10. The machine is powered by the 4-core Intel i3 CPU at 2.3 GHz. The
fitness evaluations for the Genetic algorithm were written to run in parallel.
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D. Strength Attribute Evaluation

Table D.1 gives the first 30 most strongly correlated attributes. Figures D.1
to D.3 show the spatial configurations of the Pattern attributes. The Pearson’s
r coefficient is negative for attributes mostly played by strong players, and r > 0
for attributes that are played by weak players.

Because majority of the attributes in the Table D.1 are negatively correlated,
we list some of the positively correlated attributes to complete the picture in
Table D.2.

Feature name Pearson r Attribute description
Local sequences -0.512 An average number of sente sequences, ω = 10

Pattern -0.480 A one-point jump
Local sequences -0.457 An average difference between the number of

sente and gote sequences, ω = 10
Pattern -0.455 A horse move
Pattern -0.446 Jumping ahead
Pattern -0.438 An attachment, part of a joseki sequence
Pattern 0.437 An empty triangle
Pattern -0.424 A peep at a one-point jump
Pattern -0.409 A general one-point approach move
Pattern 0.402 An empty triangle
Pattern -0.398 A one-point approach move on the third line
Pattern -0.391 An attachment in the corner
Pattern -0.381 A connection to prevent a cut
Pattern -0.381 A diagonal move, kosumi

Captured stones 0.377 An average number of stones captured within
first 60 moves.

Pattern -0.376 A one-point jump (probably to the center)
Pattern -0.368 Pushing ahead
Pattern -0.366 A horse move (keima) corner approach
Pattern -0.364 A peep at a one-point jump
Pattern -0.360 A horse move approach

Local sequences -0.358 An average number of gote moves, ω = 10
Pattern 0.351 A solid connection
Pattern -0.349 A hane at one stone
Pattern -0.348 An attachment to one stone
Pattern -0.346 A horse move
Pattern -0.346 Securing life in corner
Pattern -0.344 Cutting through a horse move

Captured stones 0.343 Average number of stones captured by oppo-
nent within first 60 moves.

Win/Loss points 0.342 Average number of points for lost games.
Pattern -0.341 A horse move approach

Table D.1: List of attributes most strongly correlated with strength.
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Feature name Pearson r Attribute description
Pattern 0.333 A “weird” shape

Win/Loss stat 0.331 Average difference between number of games
lost by points and lost by resignation.

Pattern 0.325 Pushing from behind
Captured stones 0.324 Average number of stones captured by oppo-

nent in the middle game (moves ∈ 〈61, 240〉)
Pattern 0.317 An endgame move after opponent’s mistake

Table D.2: List of some other positively correlated attributes.

r = −0.480 r = −0.455 r = −0.446

r = −0.438 r = 0.437 r = −0.424

r = −0.409 r = 0.402 r = −0.398

Figure D.1: First 9 most correlated pattern attributes, along with the Pearson’s
correlation coefficient r.
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r = −0.391 r = −0.381 r = −0.381

r = −0.376 r = −0.368 r = −0.366

r = −0.364 r = −0.360 r = 0.351

r = −0.349 r = −0.348 r = −0.346

Figure D.2: Next 12 most correlated pattern attributes, along with the Pearson’s
correlation coefficient r.

73



r = −0.346 r = −0.344 r = −0.341

r = 0.333 r = 0.325 r = 0.317

Figure D.3: Further strongly correlated pattern attributes and their Pearson’s
correlation coefficient r.
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